
Columnar Storage and List-based Processing for Graph
Database Management Systems
Pranjal Gupta, Amine Mhedhbi, Semih Salihoglu

University of Waterloo

{pranjal.gupta,amine.mhedhbi,semih.salihoglu}@uwaterloo.ca

ABSTRACT
We revisit column-oriented storage and query processing tech-

niques in the context of contemporary graph database management

systems (GDBMSs). Similar to column-oriented RDBMSs, GDBMSs

support read-heavy analytical workloads that however have funda-

mentally different data access patterns than traditional analytical

workloads. We first derive a set of desiderata for optimizing storage

and query processors of GDBMS based on their access patterns.

We then present the design of columnar storage, compression, and

query processing techniques based on these desiderata. In addition

to showing direct integration of existing techniques from colum-

nar RDBMSs, we also propose novel ones that are optimized for

GDBMSs. These include a novel list-based query processor, which

avoids expensive data copies of traditional block-based processors

under many-to-many joins, a new data structure we call single-

indexed edge property pages and an accompanying edge ID scheme,

and a new application of Jacobson’s bit vector index for compress-

ing NULL values and empty lists. We integrated our techniques

into the GraphflowDB in-memory GDBMS. Through extensive ex-

periments, we demonstrate the scalability and query performance

benefits of our techniques.

PVLDB Reference Format:
Pranjal Gupta, Amine Mhedhbi, Semih Salihoglu. Columnar Storage and

List-based Processing for Graph Database Management Systems. PVLDB,

14(11): 2491-2504, 2021.

doi:10.14778/3476249.3476297

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/graphflow/graphflow-columnar-techniques.

1 INTRODUCTION
Contemporary GDBMSs are data management software such as

Neo4j [47], Neptune [5], TigerGraph [59], and GraphflowDB [32,

41] that adopt the property graph data model [48]. In this model,

application data is represented as a set of vertices and edges, which

represent the entities and their relationships, and key-value prop-

erties on the vertices and edges. GDBMSs support a wide range of

analytical applications, such as fraud detection and recommenda-

tions in financial, e-commerce, or social networks [56] that search

for patterns in a graph-structured database, which require reading

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.

doi:10.14778/3476249.3476297

large amounts of data. In the context of RDBMSs, column-oriented

systems [29, 53, 57, 66] employ a set of read-optimized storage,

indexing, and query processing techniques to support traditional

analytical applications, such as business intelligence and report-

ing, that also process large amounts of data. As such, these tech-

niques are relevant for improving the performance and scalability

of GDBMSs.

In this paper, we revisit columnar storage and query process-

ing techniques in the context of GDBMSs. Specifically, we focus

on an in-memory GDBMS setting and discuss the applicability of

columnar storage and compression techniques for storing different

components of graphs [1, 2, 57, 68], and block-based query pro-

cessing [3, 11]. Despite their similarities, workloads in GDBMSs

and columnar RDBMSs also have fundamentally different access

patterns. For example, workloads in GDBMSs contain large many-

to-many joins, which are not frequent in column-oriented RDBMSs.

This calls for redesigning columnar techniques in the context of

GDBMSs. The contributions of this paper are as follows.

Guidelines and Desiderata:We begin in Section 3 by analyzing

the properties of data access patterns in GDBMSs. For example, we

observe that different components of data stored in GDBMSs can

have some structure and the order in which operators access vertex

and edge properties often follow the order of edges in adjacency

lists. This analysis instructs a set of guidelines and desiderata for

designing the physical data layout and query processor of a GDBMS.

Columnar Storage: Section 4 explores the application of columnar

data structures for storing different data components in GDBMSs.

While existing columnar structures can directly be used for stor-

ing vertex properties and many-to-many (n-n) edges, we observe

that using straightforward edge columns, to store properties of

n-n edges does not guarantee sequential access when reading edge

properties in either forward or backward directions. An alternative,

which we call double-indexed property CSRs, can achieve sequential

access in both directions but requires duplicating edge properties.

We then describe an alternative design point, single-directional prop-
erty pages, that avoids duplication and achieves good locality when

reading properties of edges in one direction and still guarantees ran-

dom access in the other. This requires using a new edge ID scheme

that is conducive to extensive compression when storing them in

adjacency lists without any decompression overheads. Lastly, as

a new application of vertex columns, we show that single cardi-

nality edges and edge properties, i.e. those with one-to-one (1-1),

one-to-many (1-n) or many-to-one (n-1) cardinalities, are stored

more efficiently with vertex columns instead of the structures we

describe for n-n edges.

Columnar Compression: In Section 5, we review existing colum-

nar compression techniques, such as dictionary encoding, that sat-

isfy our desiderata and can be directly applied to GDBMSs. We

2491

https://doi.org/10.14778/3476249.3476297
https://github.com/graphflow/graphflow-columnar-techniques
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476297

name: “alice”
age: 45
gender: F

name: “bob”
age: 54
gender: M

name: “peter”
age: 17
gender: M

name: “jenny”
age: 23
gender: F

name: “UW”
estd: 1934

Name: “UofT”
estd: 1885

doj:
 201

4

doj: 2006

doj: 2019

since: 2003

since: 2011si
nc
e:
 2
00
9

si
nc
e:
 2
01
2

s
i
n
c
e
:

1
9
9
9

s
i
n
c
e
:

1
9
9
2

s
i
n
c
e
:

2
0
0
6

since: 2015

doj: 2006

do
j:
 1
98
0

PERSON

ORG

Vertex labels -

FOLLOWS
Edge labels -

STUDYAT

WORKAT

★ doj: date of joining

Figure 1: Running example graph.

next show that existing techniques for compressing NULL values

in columns from references [1, 2] by Abadi et al. lead to very slow

accesses to arbitrary non-NULL values. We then review Jacobson’s

bit vector index [30, 31] to support constant time rank queries,

which has found several prior applications e.g., in a range filter

structure in databases [64], in information retrieval [21, 44] and

computational geometry [14, 45]. We show how to enhance one of

Abadi’s schemes with an adaptation of Jacobson’s index to provide

constant-time access to arbitrary non-NULL values, with a small

increase in storage overhead compared to prior techniques.

List-based Processing: In Section 6, we observe that traditional

block-based processors or columnar RDBMSs [3, 67] process fixed-

length blocks of data in tight loops, which achieves good CPU and

cache utility but results in expensive data copies under n-n joins.

To address this, we propose a new block-based processor we call

list-based processor (LBP), which modifies traditional block-based

processors in two ways to tailor them for GDBMSs: (i) Instead of

representing the intermediate tuples processed by operators as a

single group of equal-sized blocks, we represent them as multiple

factorized groups of blocks. We call these list groups. LBP avoids

expensive data copies by flattening blocks of some groups into

single values when performing n-n joins. (ii) Instead of fixed-length

blocks, LBP uses variable length blocks that take the lengths of

adjacency lists that are represented in the intermediate tuples. Be-

cause adjacency lists are already stored in memory consecutively,

this allows us to avoid materializing adjacency lists during join

processing, improving query performance.

We integrated our techniques into GraphflowDB [32].We present

extensive experiments that demonstrate the scalability and per-

formance benefits (and tradeoffs) of our techniques both on mi-

crobenchmarks and on the LDBC and JOB benchmarks against a

row-based Volcano-style implementation of the system, an open-

source version of a commercial GDBMSs, and two column-oriented

RDBMSs. Our code, queries, and data are available here [25].

2 BACKGROUND
In the property graph model, vertices and edges have labels and

arbitrary key value properties. Figure 1 shows a property graph that

will serve as our running example, which contains vertices with

PERSON and ORGANIZATION (ORG) labels, and edges with FOLLOWS,
STUDYAT and WORKAT labels.

There are three storage components of GDBMSs: (i) topology,

i.e., adjacencies of vertices; (ii) vertex properties; and (iii) edge

properties. In every native GDBMS we are aware of, the topology

a

SCAN JOIN jo1

a b

FILTER
a.age
> 50

FILTER
d.name

= “UW”

JOIN jo2

b c

JOIN jo2

c d

List Group 1 List Group 2 List Group 3

a

Scan ListExtend

a b

Filter
a.age
> 50 b c

ColumnExtend

c d

ListExtend

a

Scan Join

a b

Filter

a.age > 22

Filter

b.estd < 2015

Figure 2: Query plan for the query in Example 1.

is stored in data structures that organize data in adjacency lists [12],
such as in compressed sparse row (CSR) format. Typically, given

the ID of a vertex 𝑣 , the system can in constant-time access 𝑣 ’s

adjacency list, which contains a list of (edge ID, neighbour ID) pairs.

Typically, the adjacency list of 𝑣 is further clustered by edge label

which enables efficient traversal of the neighbourhood of 𝑣 , given

a particular label. Vertex and edge properties can be stored in a

number of ways. For example, some systems use a key-value store,

such as DGraph [15] and JanusGraph [6], and some use a variant

of interpreted attribute layout [9], where records consist of variable-
sized key-value properties. Records can be located consecutively in

disk or memory or have pointers to each other, as in Neo4j.

Queries in GDBMSs consist of a subgraph pattern 𝑄 that de-

scribes the joins in the query (similar to SQL’s FROM) and optionally

predicates on these patterns with final group-by-and-aggregation

operations. We assume a GDBMS with a query processor that uses

variants of the following relational operators, which is the case in

many GDBMSs, e.g., Neo4j [47], Memgraph [40], or GraphflowDB:

Scan: Scans a set of vertices from the graph.

Join (e.g. Expand in Neo4j andMemgraph, Extend in GraphflowDB):
Performs an index nested loop join using the adjacency list index

to match an edge of 𝑄 . Takes as input a partial match 𝑡 that has

matched 𝑘 of the query edges in 𝑄 . For each 𝑡 , Join extends 𝑡 by
matching an unmatched query edge 𝑞𝑣𝑠→𝑞𝑣𝑑 , where 𝑞𝑣𝑠 or 𝑞𝑣𝑑 has

already been matched. For example if 𝑞𝑣𝑠 has already been matched

to data vertex 𝑣𝑖 , then the operator produces one (𝑘 + 1)-match for

each edge-neighbour pair in 𝑣𝑖 ’s forward adjacency list
1
.

Filter: Applies a predicate 𝜌 to a partial match 𝑡 , reading any

necessary vertex and edge properties from storage.

Group By And Aggregate: Performs a standard group by and

aggregation computation on a partial match 𝑡 .

Example 1. Below is an example query written in the Cypher
language [19]:

MATCH (a:PERSON)−[e:WORKAT]→(b:ORG)
WHERE a.age > 22 AND b.estd < 2015 RETURN *

The query returns all persons 𝑎 and their workplaces 𝑏, where 𝑎 is
older than 22 and 𝑏 was established before 2015. Figure 2 shows a
typical plan for this query.

3 GUIDELINES AND DESIDERATA
We next outline a set of guidelines and desiderata for organizing the

physical data layout and query processor of GDBMSs. We assume

edges are doubly-indexed in forward and backward adjacency lists,

as in every GDBMS we are aware of. We will not optimize this

duplication as this is needed for fast joins from both ends of edges.

Guideline 1. Edge and vertex properties are read in the same
order as the edges appear in adjacency lists after joins.
1
GraphflowDB can perform an intersection of multiple adjacency lists if the pattern is

cyclic (see reference [41]).

2492

Observe that JOIN accesses the edges and neighbours of a ver-

tex 𝑣𝑖 in the order these edges appear in 𝑣𝑖 ’s adjacency list 𝐿𝑣𝑖 =

{(𝑒𝑖1, 𝑣𝑖1)..., (𝑒𝑖ℓ , 𝑣𝑖ℓ)}. If the next operator also needs to access the

properties of these edges or vertices, e.g., Filter in Figure 2, these

accesses will be in the same order. Our first desiradata is to store

the properties of 𝑒𝑖1 to 𝑒𝑖ℓ sequentially in the same order. Ideally,

a system should also store the properties 𝑣𝑖 𝑗 sequentially in the

same order but in general this would require prohibitive data repli-

cation because while each 𝑒𝑖 𝑗 appears in two adjacency lists, each

𝑣𝑖 𝑗 appears in as many lists as the degree of 𝑣𝑖 𝑗 .

Desideratum 1. Store and access the properties of edges sequen-
tially in the order edges appear in adjacency lists.

Guideline 2. Access to vertex properties will not be to sequential
locations and many adjacency lists are very small.
Guideline 1 implies that we should expect random accesses in mem-

ory when an operators access vertex properties. In addition, real-

world graph data with n-n relationships have power-law degree

distributions [37]. So, there are often many short adjacency lists

in the dataset. For example, the FLICKR, WIKI graphs that we use,
have single edge labels with average degrees of only 14 and 41,

and the Twitter dataset used in many prior work on GDBMSs [33]

has a degree of 35. Therefore when processing queries with two

or more joins, reading different adjacency lists will require itera-

tively reading a short list followed by a random access. This implies

that techniques that require decompressing blocks of data, say a

few KBs, to only read a single vertex property or a single short

adjacency list can be prohibitively expensive.

Desideratum 2. If compression is used, decompressing arbitrary
data elements in a compressed block should happen in constant time.

Guideline 3. Graph data often has partial structure.
Although the property graph model is semi-structured, data in

GDBMSs often have some structure. One reason for this is because

the data in GDBMSs sometimes comes from structured data from

RDBMSs as observed in a recent user survey [56]. In fact, several

vendors and academics are actively working on defining a schema

language for property graphs [13, 27]. Common structure are:

(i) Edge label determines source and destination vertex labels. For
example, in the popular LDBC social network benchmark (SNB),

KNOWS edges exist only between vertices of label PERSON.

(ii) Label determines vertex and edge properties. Similar to attributes

of a relational table, properties on an edge or vertex and their

datatypes can often be determined by the label. For example,

this is the case for every vertex and edge label in LDBC.

(iii) Edges with single cardinality. Edges might have cardinality con-

straints: 1-n (single cardinality in the backward edges), n-1 (sin-

gle cardinality in the forward edges), 1-1, and n-n. An example

of 1-n cardinality from LDBC SNB is that each organization
has one isLocatedIn edge.

We refer to edges that satisfy properties (i) and (ii) as structured edges
and properties that satisfy property (ii) as structured vertex/edge
property. Other edges and properties will be called unstructured.
The existence of such structure in some graph data motivates our

third desideratum:

Desideratum 3. Exploit structure in the data for space-efficient
storage and faster access to data.

Table 1: Columnar data structures and data components
they are used for. V-Column stands for vertex column.

Data Columnar data structure
Vertex Properties V-Column

Edge Properties

V-Column: of src when n-1, of dst when

1-n, of either src or dst when 1-1

Single-indexed prop. pages when n-n

Fwd Adj. lists V-Column when 1-1 and n-1, CSR o.w.

Bwd Adj. lists V-Column when 1-1 and 1-n, CSR o.w.

e1,p2 e9,p4 e7,p3 e11,p4 e2,p1 e5,p2 e3,p4 ...

FOLLOWS STUDYAT WORKAT

e4,o1 e12,o2 e8,o2 ... e10,o2 ...

p1 p2 p3 ...p1 p2 p3 ... p1 p2 p3 ...

Figure 3: Example forward adjacency lists implemented as
a 2-level CSR structure for the example graph.

4 COLUMNAR STORAGE
We next explore using columnar structures for storing data in

GDBMSs to meet the desiderata from Section 3. For reference, Ta-

ble 1 presents the summary of the columnar structures we use and

the data they store. We start with directly applicable structures and

then describe our new single-indexed property pages structure and

its accompanying edge ID scheme to store edge properties.

4.1 Directly Applicable Structures
4.1.1 CSR for n-n Edges. CSR is an existing columnar structure

that is widely used by existing GDBMSs to store edges. A CSR,

shown in Figure 3, effectively stores a set of (vertex ID, edge ID,

neighbour ID) triples sorted by vertex ID, where the vertex IDs are

compressed similar to run-length encoding. In this work, we store

the edges of each edge label with n-n cardinality in a separate CSR.

As we discuss next, we can store the edges with other cardinalities

more efficiently than a CSR by using vertex columns.

4.1.2 Vertex Columns for Vertex Properties, Single Cardinality Edges
and Edge Properties. With an appropriate vertex ID scheme, columns

can be directly used for storing structured vertex properties in a

compact manner. Let 𝑝𝑖,1, 𝑝𝑖,2, ...𝑝𝑖,𝑛 be the structured vertex prop-

erties of vertices with label 𝑙𝑣𝑖 . We have a vertex column for each

𝑝𝑖, 𝑗 , that stores 𝑝𝑖, 𝑗 properties of vertices in consecutive locations.

Then we can adopt a (vertex label, label-level positional offset) ID

scheme and ensure that offsets with the same label are consecutive.

As we discuss in Section 5.2, this ID scheme also can be compressed

by factoring out vertex labels.

Similarly, we can store single cardinality edges, i.e., those with

1-1, 1-n, or n-1 constraints, and their properties directly as a prop-
erty of source or destination vertex of the edges in a vertex column

and directly access them using a vertex positional offset. As we

momentarily discuss, this is more efficient both in terms of storage

and access time than the structures we cover for storing properties

of n-n edges (Desideratum 3). Figure 4 shows single cardinality

2493

...

name
STRING

gender
STRING

age
INT

0

1

2

3

vertex properties

...

STUDYAT
EDGE

STUDYAT

doj
INT

...

WORKAT

 peter

jenny

bob

alice

54

17

45

23 F

F

M

M

2019

2014

2006

...

WORKAT
EDGE

doj
INT

...

1980

2006

Figure 4: Example vertex columns storing vertex properties
and single-cardinality edges and their properties.

STUDYAT and WORKAT edges from our example and their prop-

erties stored as vertex column of PERSON vertices.

4.2 Single-indexed Edge Property Pages for
Properties of n-n Edges

Recall Desideratum 1 that access to edge properties should be in

the same order of the edges in adjacency lists. We first review

two columnar structures, edge columns and double-indexed property
CSRs, the former of which has low storage cost but does not satisfy

Desideratum 1 and the latter has high storage cost but satisfies

Desideratum 1. We then describe a new design, which we call single-
indexed property pages, which has low storage cost as edge columns

and with a new edge ID scheme can partially satisfy Desideratum 1,

so dominates edge columns in this design space.

Edge Columns: We can use a separate edge column for each prop-

erty 𝑞𝑖, 𝑗 of edge label 𝑙𝑒𝑖 . Then with an appropriate edge ID scheme,

such as (edge label, label-level positional offset), one can perform a

random access to read the 𝑞𝑖, 𝑗 property of an edge 𝑒 . This design has

low storage cost and stores each property once but does not store

the properties according to any order. In practice, the order would

be determined by the sequence of edge insertions and deletions.

Double-Indexed Property CSRs. An alternative is to mimic the

storage of adjacency lists in the CSRs in separate CSRs that store

edge properties. For each vertex 𝑣 we can store 𝑞𝑖, 𝑗 twice in forward
and backward property lists. This design provides sequential read of

properties in both directions, thereby satisfying Desideratum 1, but

also requires double the storage of edge columns. This can often

be prohibitive especially for in-memory systems, as many graphs

have orders of magnitude more edges than vertices.

A natural question is: Can we avoid duplicate storage of double-
indexed property CSRs but still achieve sequential reads? We next

show a structure that with an appropriate edge ID scheme obtains

sequential reads in one direction, so partially satisfying Desidera-

tum 1. This structure therefore dominates edge columns in design.

Single-indexed property pages: A first natural design uses only

one property CSR, say forward. We call this structure single-indexed
property CSR. Then, properties can be read sequentially in the for-

ward direction. However, reading a property in the other direction

quickly, specifically with constant time access, requires a new edge

ID scheme. To see this suppose a system has read the backward

adjacency lists of a vertex 𝑣 with label 𝑙𝑒𝑖 , {(𝑒1, 𝑛𝑏𝑟1), ..., (𝑒𝑘 , 𝑛𝑏𝑟𝑘)},
and needs to read the 𝑞𝑖, 𝑗 property of these edges. Then given say

p1

 e3(p3,p4) e13(p4,p2) e5(p3,p2) e2(p3,p1)

p2

since INT

 e1(p1,p2) e7(p2,p3) e9(p1,p4) e11(p2,p4)

2015 20112012 1992

2003 20062009 1999

Figure 5: Single-indexed property pages for since property
of FOLLOWS edges in the example graph. 𝑘 = 2.

𝑒1, we need to be able to read 𝑒1’s 𝑞𝑖, 𝑗 property from the forward

property list 𝑃𝑛𝑏𝑟1 of 𝑛𝑏𝑟1. With a standard edge ID scheme, for

example one that assigns consecutive IDs to all edges with label

𝑙𝑒𝑖 , the system would need to first find the offset 𝑜 of 𝑒1 in forward

adjacency list of 𝑛𝑏𝑟1, 𝐿𝑛𝑏𝑟1 , which may require scanning the entire

𝐿𝑛𝑏𝑟1 , which is not constant time.

Instead, we can adopt a new edge ID scheme that stores the

following: (edge label, source vertex ID, list-level positional offset)
2
.

With this scheme a system can: (i) identify each edge, e.g., perform

equality checks between two edges; and (ii) read the offset 𝑜 directly

from edge IDs, so reading edge properties in the opposite direction

(backward in our example) can now be constant time. In addition,

this scheme can be more space-efficient than schemes that assign

consecutive IDs to all edges as its first two components can often

be compressed (see Section 5.2). However, single-indexed property

CSR and this edge ID scheme has two limitations. First access to

properties in the ‘opposite direction’ requires two random accesses,

e.g., first access obtains the 𝑃𝑛𝑏𝑟1 list using 𝑛𝑏𝑟1’s ID and the second

access reads a 𝑞𝑖, 𝑗 property from 𝑃𝑛𝑏𝑟1 . Second, although we do not

focus on updates in this paper, using edge IDs that contain positional

offsets has an important consequence for GDBMSs. Observe that

positional offsets that are used by GDBMSs are explicitly stored in

data structures. Therefore, when deletions happen, we need to leave

gaps in adjacency lists and recycle them when insertions happen.

This may leave many gaps in adjacency lists because to recycle a

list-level offset, the system needs to wait for another insertion into

the same adjacency list, which may be infrequent.

Our single-indexed property pages addresses these two issues

(Figure 5). We store 𝑘 property lists (by default 128) in a property

page. In a property page, properties of the same list does not have to

be consecutively. However, because we use a small value of 𝑘 , these

properties are stored in close-by memory locations. We modify the

edge ID scheme above to use page-level positional offsets. This

has two advantages. First, given a positional offset, the system

can directly read an edge property (so we avoid the access to read

𝑃𝑛𝑏𝑟1). Second, the system can recycle a page-level offset whenever

any one of the k lists get a new insertion. For reference, Figure 5

shows the single-indexed property pages in the forward direction

for since property of edges with label FOLLOWS when 𝑘=2.

5 COLUMNAR COMPRESSION
Compression and query processing on compressed data are widely

used in columnar RDBMSs. We start by reviewing techniques that

apply directly to GDBMSs and are not novel. We then discuss the

2
If we use the backward property CSR, the second component would instead be the

destination vertex ID.

2494

cases when we can compress the new vertex and edge ID schemes

from Section 4. Finally, we review existing NULL compression

schemes from columnar RDBMSs [1, 2] and enhance one of them

with Jacobson’s bit vector index to make it suitable for GDBMSs.

5.1 Directly Applicable Techniques
Recall our Desideratum 2 that because access to vertex properties

cannot be localized and because many adjacency lists are very

short, the compression schemes that are suitable for in-memory

GDBMSs need to either avoid decompression completely or support

decompressing arbitrary elements in a block in constant time. This

is only possible if the elements are encoded in fixed-length codes
instead of variable-length codes.We review dictionary encoding and

leading 0 suppression, which we integrated in our implementation

and refer readers to references [2, 20, 36] for details of other fixed-

length schemes, such as frame of reference.

Dictionary encoding: This is perhaps the most common encoding

scheme to be used in RDBMSs [2, 63, 68].This schememaps a domain

of values into compact codes using a variety of schemes [2, 23, 68],

some producing variable-length codes, such as Huffmann encoding,

and others fixed-length codes [2]. We use dictionary encoding to

map a categorical edge or vertex property 𝑝 , e.g., gender property

of PERSON vertices in LDBC SNB dataset, that takes on 𝑧 different

values to ⌈𝑙𝑜𝑔2(𝑧)/8⌉ bytes (we pad 𝑙𝑜𝑔2(𝑧) bits with 0s to have a

fixed number of bytes).

Leading 0 Suppression: This scheme omits storing leading zero

bits in each value of a given block of data [9]. We adopt a fixed-

length variant of this for storing components of edge and vertex IDs,

e.g., if the maximum size of a property page is 𝑡 , we use ⌈𝑙𝑜𝑔2(𝑡)/8⌉
many bytes for the page-level positional offset of edge IDs.

5.2 Factoring Out Edge/Vertex ID Components
Our vertex and edge ID schemes from Sections 4 decompose the

IDs into many small components, which can be factored out when

the data depicts some structure (Desideratum 3). This allows com-

pression without the need to decompress while scanning. Recall

that the ID of an edge 𝑒 is a triple (edge label, source/destination

vertex ID, page-level positional offset) and the ID of a vertex 𝑣 is

a pair (vertex label, label-level positional offset). Recall also that

GDBMSs store (edge ID, neighbour ID) pairs in adjacency lists. First,

the vertex IDs inside the edge ID can be omitted because this is the

neighbour vertex ID, which is already stored in the pairs. Second

edge labels can be omitted because we cluster our adjacency lists

by edge label. The only components that need to be stored are: (i)

positional offset of the edge ID; and (ii) vertex label and positional

offset of neighbour vertex ID. When the data depicts some structure,

we can further factor out some of these components as follows:

• Edges do not have properties: Often, edges of a particular label
do not have any properties and only represent the relationships

between vertices. For example, 10 out of 15 edge labels in LDBC

SNB do not have any properties. In this case, edges need not be

identifiable, as the system will not access their properties. We

can therefore distinguish two edges by their neighbour ID and

edges with the same IDs are simply replicas of each other. Hence,

we can completely omit storing the positional offsets of edge IDs.

• Edge label determines neighbour vertex label. Often, edge labels
in the graph are between a single source and destination vertex

edge e

Do not store
positional offsets

Store positional
offsets

single
cardinality ?

has
properties ?

no yes

yes no

Figure 6: Decision tree for storing page-level positional
offsets of edges in adjacency lists.

label, e.g., Knows edges in social networks are between Person
nodes. In this case, we can omit storing the vertex label of the

neighbour ID.

• Single cardinality edges: Recall from Section 4.1.2 that the proper-

ties for single cardinality edges can be stored in vertex columns.

So we can directly read these properties by using the source

or destination vertex ID. So, the page-level positional offsets of

these edges can be omitted.

Figures 6 shows our decision tree to decide when to omit storing

the page-level positional offsets in edge IDs.

5.3 NULL and Empty List Compression
Edge and vertex properties can often be quite sparse in real-world

graph data. Similarly, many vertices can have empty adjacency

lists in CSRs. Both can be seen as different columnar structures

containing NULL values. Abadi in reference [1] describes a design

space of optimized techniques for compressing NULLs in columns.

All of these techniques list non-NULL elements consecutively in a

‘non-NULL values column’ and use a secondary structure to indicate

the positions of these non-NULL values. The first technique in

Abadi’s paper, lists positions of each non-NULL value consecutively,

which is suitable for very sparse columns, e.g., with > 90% NULLs.

Second, for dense columns, lists non-NULL values as a sequence of

pairs, each indicating a range of positions with non-NULL values.

Third, for columns with intermediate sparsity, uses a bit vector to

indicate if each location is NULL or not. The last technique is quite

compact and requires only 1 extra bit per each element in a column.

However, none of these techniques are directly applicable to

GDBMSs as they do not allow constant-time access to non-NULL

values (Desideratum 2). To support constant-time access to a non-

NULL value at position 𝑝 , the secondary structure needs to support

two operations in constant time: (i) check if 𝑝 is NULL or not; and

(ii) if it is non-NULL, compute the rank of 𝑝 , i.e., the number of

non-NULL values before 𝑝 .

Abadi’s third design, that uses a bit vector, already supports

checking if the value at 𝑝 is NULL. To support rank queries, we

enhance this design with a simplified version of Jacobson’s bit

vector index [30, 31]. Figure 7 shows this design. In addition to

the array of non-NULL values and the bit-string, we store prefix

sums for each 𝑐 (16 by default) elements in a block of a column,

i.e., we divide the block into chunks of size 𝑐 . The prefix sum holds

the number of non-NULL elements before the current chunk. We

also maintain a pre-populated static 2D bit-string-position-count

2495

finding value at 9 :
...

0 1 1 2

0 0 1 2

0 1 2 3

...

Prefix sum-based NULL Compressed block

notNull values

bitStrings

prefix sums

0100b 0111b 0110b 0011b

0 1 4 6

7 6 3 2 8 11 2 3

Uncompressed block
9876543210 10 11 12 13 14 15

...

7 6 3 2 8 11 2 3 5

0101b
0110b
0111b

0 1 2 3

chunkIdx = 2
position of element in chunk (i) = 1

position in notNull values array = 4 + 0 = 4 Bit position to index Map

Figure 7: NULL compression using a simplified Jacobson’s
bit vector rank index with chunk size 4.

map 𝑀 with 2
𝑐 ∗ 𝑐 cells. 𝑀[𝑏, 𝑖] is the number of 1s before the

𝑖’th bit of a c-length bit string 𝑏. Let 𝑝 be the offset which is non-

NULL and 𝑏 the c-length bit string chunk in the bit vector that 𝑝

belongs to, and 𝑝𝑠 the array storing prefix sums in a block. Then

rank(𝑝) = 𝑝𝑠[𝑝/𝑐] +𝑀[𝑏, 𝑝 mod 𝑐].

The choice of 𝑐 affects how big the pre-populated map is. A

second parameter in this scheme is the number of bits𝑚 used for

each prefix sum value, which determines how large a block we are

compressing and the overhead this scheme has for each element.

For an arbitrary𝑚,𝑐 , we require: (i) 2𝑐 ∗𝑐 ∗ ⌈log(𝑐)/8⌉ byte size map,

because the map has 2
𝑐 ∗𝑐 cells and needs to store a log(𝑐)-bit count

value in each cell; (ii) we can compress a block of size 2
𝑚
; and (iii)

we store one prefix sum for each 𝑐 elements, so incur a cost of𝑚/𝑐

extra bits per element. By default we choose𝑚 = 16, 𝑐 = 16. We

require 2
𝑐 ∗ 𝑐 ∗ 1 = 1MB-size map, can compress 2

𝑚
= 64K blocks,

and incur𝑚/𝑐 = 1 extra bit overhead for each element, so increase

the overhead of reference [1]’s scheme from 1 to only 2 bits per

element (but provide constant time access to non-NULL values).

6 LIST-BASED PROCESSING
We next motivate our list-based processor by discussing limitations

of traditional Volcano-style tuple-at-a-time processors and block-

based processors of columnar RDBMSs when processing n-n joins.

Example 2. Consider the following query. P, F, S, and O abbreviate
PERSON, FOLLOWS, STUDYAT, and ORGANISATION.

MATCH (a:P)−[:F]→(b:P)−[:F]→(c:P)−[:S]→(d:O)
WHERE a.age > 50 and d.name = "UW" RETURN *

Consider a simple plan for this query shown in Figure 8, which is

akin to a left-deep plan in an RDBMS, on a graphwhere FOLLOWS are
n-n edges and STUDYAT edges have single cardinality. Volcano-style
tuple-at-a-time processing [22], which someGDBMSs adopt [41, 47],

is efficient in terms of how much data is copied to the intermediate

tuple. Suppose the scan matches a to 𝑎1 and 𝑎1 extends to 𝑘1 many

b’s, 𝑏1 . . . 𝑏𝑘1 , and each 𝑏𝑖 extends to 𝑘2 many c’s to 𝑏𝑖𝑘2 ..., 𝑏(𝑖+1)𝑘2
(let us ignore the d extension for now). Although this generates

𝑘1 × 𝑘2 tuples, the value 𝑎1 would be copied only once to the tuple.

a

SCAN JOIN jo1

a b

FILTER
a.age
> 50

FILTER
d.name

= “UW”

JOIN jo2

b c

JOIN jo2

c d

List Group 1 List Group 2 List Group 3

a

Scan ListExtend

a b

Filter
a.age
> 50 b c

ColumnExtend

c d

ListExtend

Figure 8: Query plan for the query in Example 2.

This is an important advantage for processing n-n joins. However,

Volcano-style processors are known to achieve low CPU and cache

utility as processing is intermixed with many iterator calls.

Column-oriented RDBMSs instead adopt block-based proces-

sors [10, 29], which process an entire block at a time in operators.

Block sizes are fixed length, e.g. 1024 tuples [11, 17]. While pro-

cessing blocks of tuples, operators read consecutive memory lo-

cations, achieving good cache locality, and perform computations

inside loops over arrays which is efficient on modern CPUs. How-

ever, traditional block-based processors have two shortcomings for

GDBMSs. (1) For n-n joins, block-based processing requires more

data copying into intermediate data structures than tuple-at-a-time

processing. Suppose for simplicity a block size of 𝑘2 and 𝑘1<𝑘2.

In our example, the scan would output an array 𝑎 : [𝑎1], the first

join would output 𝑎 : [𝑎1, ..., 𝑎1], 𝑏 : [𝑏1, ..., 𝑏𝑘1] blocks, and the sec-

ond join would output 𝑎 : [𝑎1, ..., 𝑎1], 𝑏 : [𝑏1, ..., 𝑏1], 𝑐 : [𝑐1, ..., 𝑐𝑘2],

where for example the value 𝑎1 gets copied 𝑘2 times into intermedi-

ate arrays. (2) Traditional block-based processors do not exploit the

list-based data organization of GDBMSs. Specifically, the adjacency

lists that are used by join operators are already stored consecutively

in memory, which can be exploited to avoid materializing these

lists into blocks.

We developed a new block-based processor called list-based pro-
cessor (LBP), which we next describe. LBP uses factorized represen-
tation of intermediate tuples [8, 51, 52] to address the data copying

problem and uses block sizes set to the lengths of adjacency lists in

the database, to exploit list-based data storage in GDBMSs.

6.1 Intermediate Tuple Set Representation
Traditional block-based processors represent intermediate data as a

set of flat tuples in a single group of blocks/arrays. In our example

we had three variables a, b, and c corresponding to three arrays.

The values at position 𝑖 of all arrays form a single tuple. Therefore

to represent the tuples that are produced by n-n joins, repetitions

of values are necessary. To address these repetitions we adopt a

factorized tuple set representation scheme [52]. Instead of flat tuples,

factorized representation systems represent tuples as unions of

Cartesian products. For example, the 𝑘2 flat tuples [(𝑎1, 𝑏1, 𝑐1) ∪
(𝑎1, 𝑏1, 𝑐2) ∪ ... ∪ (𝑎1, 𝑏1, 𝑐𝑘2)] from above can be represented more

succinctly in a factorized form as: [(𝑎1) × (𝑏1) × (𝑐1 ∪ ... ∪ 𝑐𝑘2)].

To adopt factorization in block-based processing, we instead use

multiple groups of blocks, which we call list groups, to represent

intermediate data. Each list group has a curIdx field and can be in

one of two states:

• Flat: If curIdx ≥ 0, the list group is flattened and represents a

single tuple that consists of the curIdx’th values in the blocks.

• Unflat list of tuples: If curIdx =−1, the list groups represent as
many tuples as the size of the blocks it contains.

We call the union of list groups intermediate chunk, which repre-

sents a set of intermediate tuples as the Cartesian product of each

tuple that each list group represents.

2496

a1 a2 ... a1024

51 19 ... 23

1 0 ... 0

a.ID

a.age

filter
mask

b1 b2 ... bk1

1 1 ... 1

b.ID ck2+1 ck2+2 ... c2k2

dk2+1 dk2+1 ... d2k2

1 0 ... 1

c.ID

d.ID

UW UofT ... UWd.name

filter
mask

filter
mask

List Group 1 List Group 2 List Group 3

curIdx = 0

curIdx = 0

curIdx = -1

a1 a2 ... a1024

51 62 ... 68

a.ID

a.age

b1 b2 ... bk1b.ID c1 c2 ... ck2

d1 d2 ... dk2

c.ID

d.ID

List Group LG1 List Group LG2
List Group LG3

curIdx = 0

curIdx = 1

curIdx = -1

Figure 9: Intermediate chunk for the query in Example 2.
The first two list groups are flattened to single tuples, while

the last one represents 𝑘2 many tuples.

Example 3. Figure 9 shows an intermediate chunk, that consists
of three list groups. The first two groups are flattened and the last
is unflat. In its current state, the intermediate chunk represents 𝑘2
intermediate tuples as: (𝑎1, 51) × (𝑏2) × ((𝑐1, 𝑑1) ∪ ... ∪ (𝑐2, 𝑑2)).

In addition, instead of using fixed-length blocks as in existing

block-based processors, the blocks in each group can take different

lengths, which are aligned to the lengths of adjacency lists in the

database. Aswe shortly explain, this allows us to avoidmaterializing

adjacency lists into the blocks.

6.2 Operators
We next give a description of the main relational operators we

implemented to process intermediate chunks in LBP.

Scan: Scans are the ame as before and read a fixed size (1024 by

default) nodeIDs into a block in a list group.

ListExtend and ColumnExtend: In contrast to a single Join oper-

ator that implements index nested loop join algorithm using the

adjacency list indices, such as Expand of Neo4j, we have two joins.

ListExtend is used to perform joins from a node, say, 𝑎 to nodes

𝑏 over 1-n or n-n edges 𝑒 . The input list group 𝐿𝐺𝑎 that holds the

block of 𝑎 values can be flat or unflat. If 𝐿𝐺𝑎 is not flat, ListExtend
first flattens it, i.e., sets the curIdx field of the list group to 0. It

then loops through each 𝑎 value, say, 𝑎ℓ , and extends it to the set of

𝑏 and 𝑒 values using 𝑎ℓ ’s adjacency list𝐴𝑑 𝑗𝑎ℓ . The blocks holding 𝑏

and 𝑒 values are put to a new list group, 𝐿𝐺𝑏 . This allows factoring

out a list of 𝑏 and 𝑒 values for a single 𝑎 value. The lengths of all

blocks in 𝐿𝐺𝑏 , including those storing 𝑏 and 𝑒 as well as blocks

that may be added later, will be equal to the length of 𝐴𝑑 𝑗𝑎ℓ . This

contrasts with fixed block sizes in existing block-based processors.

In addition, we exploit that 𝐴𝑑 𝑗𝑎ℓ already stores 𝑏 and 𝑒 values as

lists, and do not copy these to the intermediate chunk. Instead, the

𝑏 and 𝑒 blocks simply points to 𝐴𝑑 𝑗𝑎ℓ .

ColumnExtend is used to perform 1-1 or n-1 joins. We call the

operator ColumnExtend because recall from Section 4.1.2 that we

store such edges in vanilla vertex columns. Suppose now that each

𝑎 can extend to at most one 𝑏 node. ColumnExtend expects a block

of unflat 𝑎 values. That is, it expects 𝐿𝐺𝑎 to be unflat and adds

two new blocks into 𝐿𝐺𝑎 , for storing 𝑏 and 𝑒 , that are of the same

length as 𝑎’s block (so unlike ListExtend does not create a new

list group). Inside a for loop, ColumnExtend copies the matching 𝑒

and 𝑏 of each 𝑎 from the vertex column to these two blocks. Note

that because each 𝑎 value has a single 𝑏 and 𝑒 value, these values

do not need to be factored out.

Filter: LBP requires a more complex filter operator than those in

existing block-based processors. In particular, in traditional block

based processors, binary expressions, such as a comparison expres-

sion, can always assume that their inputs are two blocks of values.

Instead, now binary expressions need to operate on three possi-

ble value combinations: two flat, two lists or one list and one flat,

because any of the two blocks can now be in a flattened list group.

Group By And Aggregate: We omit a detailed description here

and refer the reader to our code base [25]. Briefly, similar to Filter,
Group By And Aggregate needs to consider whether the values

it should group by or aggregate are flat or not, and performs a

group by and aggregation on possibly multiple factorized tuples.

Factorization allows LBP to sometimes perform fast group by and

aggregations, similar to prior techniques that compute aggrega-

tions on compressed data [2, 60]. For example, count(*) simply

multiplies the sizes of each list group to compute the number of

tuples represented by each intermediate chunk it receives.

Example 4. Continuing our example, the three list groups in Fig-
ure 9 are an example intermediate chunk output by the ColumnExtend
operator in the plan from Figure 8. In this, the initial Scan and
Filter have filled the 1024-size 𝑎 and 𝑎.𝑎𝑔𝑒 blocks in 𝐿𝐺1. The first
ListExtend has: (i) flattened 𝐿𝐺1 to tuple (𝑎1, 51); and (ii) filled a
block of 𝑘1 𝑏 values in a new list group 𝐿𝐺2. The second ListExtend
has (i) flattened 𝐿𝐺2 and iterated over it once, so its curIdx field is 1,
and 𝐿𝐺2 now represents the tuple (𝑏2); and (ii) has filled a block of 𝑘2
𝑐 values in a new list group 𝐿𝐺3. Finally, the last ColumnExtend fills
a block of 𝑘2 𝑑 values, also in 𝐿𝐺3, by extending each 𝑐 𝑗 value to one
𝑑 𝑗 value through the single cardinality STUDY_AT edges.

7 UPDATES AND QUERY OPTIMIZATION
Although we do not focus on handling updates and query opti-

mization within the scope of this paper, these components require

further considerations in a complete integration of our techniques.

As in columnar RDBMSs, the columnar storage techniques we cov-

ered are read-optimized and necessarily add several complexities to

updates [60]. First recall from Section 4.1.1 that CSR data structure

for storing adjacency list indexes are effectively sorted structures

that are compressed by run-length encoding. So handling deletions

or insertions requires resorting the CSRs and recalculating the CSR

offsets. Insertion of edge properties in single-directional property

pages are append only and do not require any sorting. Insertions to

vertex columns are also simple as these too are unsorted structure.

However, deletions of nodes or edges, require leaving gaps in ver-

tex columns and single-directional property pages. This requires

keeping track of these gaps and reusing them for new insertions.

Note that this is also how node deletions are handled in Neo4j [46].

Finally, the null compression scheme we adopted requires three

updates upon insertion and deletions: (i) changing the bit values

in the bitstrings; (ii) re-calculating prefix sum values for prefixes

after the location of update; and (iii) shifting the non-NULL ele-

ments array. These added complexities are an inherent trade off

when integrating read-optimized techniques and can be mitigated

by several existing techniques, like bulk updates or keeping a write-

optimized second storage that keeps track of recent writes, which

are not immediately merged. Positional delta trees [28] or C-Store’s

write-store are examples [57] of the latter technique.

Two of our techniques also require additional considerations

whenmodifying the optimizer. First, our use of factorized list groups

changes the size of tuples that are passed between operators, as the

intermediate tuples are now compressed. When assigning costs to

2497

plans, the compressed sizes, instead of the flattened sizes of these

tuples should be considered. In addition, scans of properties that

are stored in, say forward single-directional property pages, behave

differently when the properties are scanned in the forward direction

(e.g., after a join that has used the forward adjacency lists) vs the

backward direction. The former leads to sequential reads while the

latter to random reads. The optimizer should assign costs based on

this criterion as well. We leave a detailed study of how to handle

updates and optimize queries under our techniques to future work.

8 EVALUATIONS
We integrated our columnar techniques into GraphflowDB, an in-

memory GDBMS written in Java. We refer to this version of Graph-

flowDB as GF-CL (Columnar List-based). We based our work on the

publicly available version here [24], which we will refer to as GF-RV
(Row-oriented Volcano). GF-RV uses 8 byte vertex and edge IDs

and adopts the interpreted attribute layout to store edge and vertex

properties. GF-RV also partitions adjacency lists by edge labels and

stores the (edge ID, neighbour ID) pairs inside a CSR. We present

both microbenchmark experiments comparing GF-RV and GF-CL
and baseline experiments against Neo4j, MonetDB, and Vertica

using LDBC and JOB benchmarks. Due to space constraints our

experiment demonstrating benefits of vertex columns for single

cardinality edges appears in the longer version of our paper [26].

8.1 Experimental Setup
Hardware Setup: For all our experiments, we use a single machine

that has two Intel E5-2670 @ 2.6GHz CPUs and 512 GB of RAM.

We only use one logical core. We set the maximum size of the JVM

heap to 500 GB and keep JVM’s default minimum size.

Datasets: Our LBP is designed to yield benefits under join queries

over 1-n and n-n relationships. Our storage compression techniques

exploit some structure in the dataset and NULLs. These techniques

are not designed for datasets that do not depict structure, e.g., a

highly heterogenous knowledge graph, such as DBPedia.We choose

the following datasets and queries that satisfy these requirements:

LDBC:We generated the LDBC social network data [18] using scale

factors 10 and 100, which we refer to as LDBC10 and LDBC100,

respectively. In LDBC, all of the edges and edge and vertex proper-

ties are structured but several properties and edges are very sparse.

LDBC10 contains 30M vertices and 176.6M edges while LDBC100

contains 1.77B edges and 300M vertices. Both datasets contain 8

vertex labels, 15 edge labels and 34 (29 vertex, 5 edge) properties.

JOB:Weused the IMDbmovie database and the JOB benchmark [35].

Although the workload has originally been created to study opti-

mizing join order selection, the dataset contains several n-n, 1-n,

and 1-1 relationships between entities, like actors, movies, and com-

panies, and structured properties, some of which contain NULLs.

This makes it suitable to demonstrate the benefits from our storage

and compression techniques. JOB also contains join queries over

n-n relationships, making it suitable to demonstrate benefits of LBP.

We created a property graph version of this database and workload

as follows. IMDb contains three groups of tables: (i) entity tables
representing entities, such as actors (e.g., name table), movies, and

companies; (ii) relationship tables representing n-n relationships

between the entities (e.g., the movie_companies table represents
relationships between movies and companies); and (iii) type tables,

which denormalize the entity or relationship tables to indicate the

types of entities or relationships. We converted each row of an

entity table to a vertex. Let 𝑢 and 𝑣 be vertices representing, re-

spectively, rows 𝑟𝑢 and 𝑟𝑣 from tables 𝑇𝑢 an 𝑇𝑣 . We added two sets

of edges between 𝑢 and 𝑣 : (i) a foreign key edge from 𝑢 to 𝑣 if the

primary key of row 𝑟𝑢 is a foreign key in row 𝑟𝑣 ; (ii) a relationship
edge between 𝑢 to 𝑣 if a row 𝑟ℓ in a relationship table 𝑇ℓ connects

row 𝑟𝑢 and 𝑟𝑣 . The final dataset can be found in our codebase [25].

FLICKR and WIKI: To enhance our microbenchmarks further, we use

two additional datasets from the popular Konect graph sets [33] cov-

ering two application domains: a Flickr social network (FLICKR) [42]
and a Wikipedia hyperlink graph between articles of the German

Wikipedia (WIKI) [34]. Flickr graph has 2.3M nodes and 33.1M

edges while Wikipedia graph has 2.1M nodes and 86.3M edges.

Both datasets have timestamps as edge properties.

In each experiment, we ran our queries 5 times consecutively

and report the average of the last 3 runs. We did not observe large

variances in these experiments. Across all of the LDBC and JOB

benchmark queries we report, the median difference between the

minimum and maximum of the 3 runs we report was 1.02% and the

largest was 25%, which was a query in which the maximum run

was 24ms while the minimum was 19ms.

8.2 Memory Reduction
We first demonstrate the memory reduction we get from the colum-

nar storage and compression techniques we studied using LDBC100

and IMDb.We start with GF-RV and integrate one additional storage
optimization step-by-step ending with GF-CL:

(i) +COLS: Stores vertex properties in vertex columns, edge proper-

ties in single-directional property pages, and single cardinality

edges in vertex columns (instead of CSR).

(ii) +NEW-IDS: Introduces our new vertex and edge ID schemes and

factors out possible ID components (recall Section 5.2).

(iii) +0-SUPR: Implements leading 0 suppression in the components

of vertex and edge IDs in adjacency lists.

(iv) +NULL: Implements NULL compression of empty lists and vertex

properties based on Jacobson’s index.

Table 2a shows how much memory each component of the sys-

tem as well as the entire system take after each optimization. On

LDBC, we see 2.96x and 2.74x reduction for storing forward and

backward adjacency lists, respectively. We reduce memory signifi-

cantly by using the new ID scheme that factors out components,

such as edge and vertex labels, and using small size integers for

positional offsets. We also see a 1.58x reduction by storing vertex

properties in columns, which, unlike interpreted attribute layout,

saves on storing the keys of the properties explicitly. The modest

memory gains in +COLS for storing adjacency lists is due to the fact

that 8 out of 15 edge labels in LDBC SNB are single cardinality and

storing them in vertex columns is cheaper than in CSRs, as we do

not need CSR offsets. We see a reduction of 3.82x when storing edge

properties in single-directional property pages. This is primarily

because GF-RV stores a pointer for each edge, even if the edges with

a particular label have no properties. GF-CL stores no columns for

these edges, so incurs no overheads and avoids storing the keys

of the properties explicitly. We see modest benefits in NULL com-

pression since empty adjacency lists are infrequent in LDBC100

2498

Table 2: Memory reductions after applying one more
optimization on top of the configuration on the left.

(a) LDBC100
GF-RV +COLS +NEW-IDS +0-SUPR +NULL GF-CL

Vertex

Props.

31.40 19.87 19.87 19.87 19.28 -
+1.58x - - +1.03x 1.62x

Edge

Props.

7.92 2.07 2.07 2.07 2.05 -
+3.82x - - +1.01x 3.87x

F. Adj.

Lists

31.93 28.95 20.67 11.41 10.78 -
+1.10x +1.40x +1.81x +1.06x 2.96x

B. Adj.

Lists

31.29 31.07 24.93 13.10 11.41 -
+1.01x +1.25x +1.90x +1.15x 2.74x

Total (GB)

102.56 81.97 67.55 46.45 43.54 -
+1.25x +1.21x +1.45x +1.07x 2.36x

(b) IMDb
GF-RV +COLS +NEW-IDS +0-SUPR +NULL GF-CL

Vertex

Props.

2.54 1.98 1.98 1.98 1.96 -
+1.28x - - +1.01x 1.29x

Edge

Props.

2.81 1.63 1.63 1.63 0.90 -
+1.72x - - +1.83x 3.14x

F. Adj.

Lists

1.13 1.02 0.65 0.41 0.36 -
+1.10x +1.57x +1.57x +1.15x 2.96x

B. Adj.

Lists

1.10 1.10 0.76 0.50 0.49 -
+1.00x +1.45x +1.51x +1.01x 2.20x

Total (GB)

7.57 5.74 5.02 4.53 3.72 -
+1.32x +1.14x +1.11x +1.22x 2.03x

and 26 of 29 vertex properties and all of the edge properties con-

tain no NULL values. Overall, we obtained a reduction of 2.36x on

LDBC100, reducing the memory cost from 102.5GB to 43.5GB.

The reductions on IMDb are shown in Table 2b and are broadly

similar to LDBC. For example, we see 2.96x and 2.2x reduction

factors in forward and backward lists, which is comparable to that

of LDBC. However, there are two main differences. First, we save

more by compressing the edge properties using NULL compression,

because 7 of 12 edge properties in IMDb have more than 50% null

values. Second, instead of a 3.82x reduction by storing edge proper-

ties using single directional property columns and single cardinality

edges in vertex columns (+COLS column of Edge Props row), the
factor is now 1.72x. This is because all of the edge properties in

LDBC are 4-byte integers. Instead, IMDb has primarily string edge

properties (8 out of 12 of the edge properties), so these take more

space compared to integers. Hence, the storage savings per byte of

actual data is higher in case of LDBC. Overall, the total reduction

factor is 2.03x reducing the memory overheads from 7.57G to 3.72G.

8.3 Single-Directional Property Pages
We next demonstrate the query performance benefits of storing

edge properties in single-directional property pages. We configure

GraphflowDB in two ways: (i) EDGE COLS: Stores edge properties

in an edge column in a randomized way as edges are given random

edge IDs; (ii) PROP PAGES: Edge properties are stored in forward-

directional property pages with 𝑘=128 . In the longer version of

our paper [26], we test sensitivity of 𝑘 that demonstrates read

performance from property pages in our datasets are similar until

𝑘=512 and slows down for larger value of 𝑘 .

Table 3: Runtime (in secs) of k-hop (H) queries when using
property pages (PAGE𝑃) vs edge columns (COL𝐸).

LDBC100 WIKI FLICKR

1H 2H 1H 2H 1H 2H

P𝐹

COL𝐸 0.55 65.22 2.97 42.92 1.88 888.30

PAGE𝑃
0.16 34.22 0.96 16.48 0.42 189.39

3.4x 1.9x 3.1x 2.6x 4.5x 4.7x

P𝐵

COL𝐸 1.23 131.01 6.33 99.28 2.40 1009.84

PAGE𝑃
1.29 134.43 6.10 91.75 2.25 1183.14

0.9x 1.0x 1.0x 1.1x 1.1x 0.9x

We use LDBC100, WIKI, and FLICKR datasets. As our workload,
we use 1- and 2-hop queries, i.e., queries that enumerate all edges

and 2-paths, with predicates on the edges. For LDBC, the paths

enumerate Knows edges (WIKI and FLICKR contain only one edge

label). 1-hop query compares the edge’s timestamp for WIKI and

FLICKR and the creationDate property for LDBC to be greater

than a constant. 2-hop query compares the property of each query

edge to be greater than the previous edge’s property. Since WIKI
contains prohibitivelymany 2-hopswe put a predicate on the source

and destination nodes tomake queries finish within reasonable time.

For each query and configurations, we consider two plans: (i) the

forward plan that matches vertices from left to right in forward

direction; (ii) the backward plan that matches in reverse order.

Forward plans perform sequential reads of properties under

PROP-PAGES, achieving good CPU cache locality. Therefore, they

are expected to be more performant than backward plans under

PROP-PAGES as well as both the plans plans under EDGE COLS,
which all lead to random reads. We also expect backward plans

to behave similarly under both configurations. Table 3 shows our

results. Observe that forward plans under PROP-PAGES is between

1.9x to 4.7x faster than the forward plans under EDGE COLS and are
also faster than the backward plans under PROP-PAGES. In contrast,

the performance of both backward plans are comparable. This is

because neither edge columns nor forward-directional property

pages provide any locality for accessing properties in order of

backward adjacency lists. This confirms our claim in Section 4.2

that PROP-PAGES is a better design than using vanilla edge columns.

8.4 Null Compression
We demonstrate the memory/performance trade-off of our NULL

compression scheme on sparse vertex property columns. We create

multiple versions of the LDBC100, with the creationDate prop-

erty of Comment vertices containing different percentage of NULL
values. LDBC100 contains 220M Comment vertices, so our column

has 220M entries. We use the following 1-hop query: MATCH

(a:Person)−[e:Likes]→(b:Comment) RETURN b.creationDate. This
query is evaluated with a simple plan that scans a, extends to

b, and then a sink operator that reads b.creationDate. We com-

pare the query performance and the memory cost of storing the

creationDate column, when it is stored in three different ways:

(i) J-NULL compresses the column using Jacobson’s bit index with

default configuration (m=16, c=16); (ii) Vanilla-NULL is the vanilla
bit string-based scheme from reference [1]; and (ii) Uncompressed
stores the column in an uncompressed format. In the longer ver-

sion of our paper [26], we demonstrate a sensitivity analysis for

2499

Uncompressed J-NULL Vanilla-NULL

Percentage of non-NULL values Percentage of non-NULL values

S
iz

e
(in

 G
B

)

Q
ue

ry
 ru

nt
im

e
(in

 s
ec

)

Figure 10: Query performance and memory consumption
when storing a vertex property column as uncompressed,
compressed with Jacobson’s scheme, and the vanilla bit
string scheme from Abadi, under different density levels.

J-NULL running under different m and c values. This experiment

shows that read performance is insensitive to these parameters.

The memory overhead increases as𝑚 increases, albeit marginally.

So a reasonable choice is picking𝑚 = 𝑐 = 16, which incurs 1 bit

extra overhead per element for storing prefix sums.

Figure 10 shows thememory usage and query performance under

three different configurations. Recall that with default configuration

J-NULL requires slightly more memory than Vanilla-NULL, 2 bits
per element instead of 1 bit. As expected the performance of J-NULL
is slightly slower than Uncompressed, between 1.19x and 1.51x,

but much faster than Vanilla-NULL, which was >20x slower than

J-NULL and is therefore omitted in Figure 10. Interestingly, when

the column is sparse enough (with >70% NULL values), J-NULL can
even outperform Uncompressed. This is because when the column

is very sparse, accesses are often to NULL elements, which takes

one access for reading the bit value of the element. When the bit

value is 0, iterators return a global NULL value which is likely to be

in the CPU cache. Instead, Uncompressed always returns the value

at element’s cell, which has a higher chance of a CPU cache miss.

8.5 List-based Processor
We next present experiments demonstrating the performance ben-

efits of LBP against a traditional Volcano-style tuple-at-a-time pro-

cessor, which are adopted in existing systems, like Neo4j [47] or

MemGraph [40]. LBP has three advantages over traditional tuple-at-

a-time processor: (1) all primitive computations over data happen

inside loops as in block-based operators; (2) the join operator can

avoid copies of edge ID-neighbour ID pairs into intermediate tuples,

exploiting the list-based storage; and (3) we can perform group-by

and aggregation operations directly on compressed data.We present

two separate sets of experiments that demonstrate the benefits from

these three factors. To ensure that our experiments only test dif-

ferences due to query processing techniques, we integrated our

columnar storage and compression techniques into GF-RV (recall
that this is GraphflowDB with row-based storage and Volcano-style

processor). We call this version GF-CV, for Columnar Volcano.
We use LDBC100, Wikipedia, and Flickr datasets. In our first

experiment, we take 1-, 2-, and 3-hop queries (as in Section 8.3,

we use the Knows edges in LDBC100), where the last edge in the

path has a predicate to be greater than a constant (e.g., e.date >

𝑐). For both GF-CV and GF-CL, we consider the standard plan that

Table 4: Runtime (ms) of GF-RV and GF-CL (LBP) plans.

1-hop 2-hop 3-hop

LDBC100

FILTER
GF-CV 24.6 1470.5 40252.4

GF-CL
7.7 116.2 2647.3

3.2x 12.7x 15.2x

COUNT(*)
GF-CV 13.4 241.9 6947.3

GF-CL
4.2 18.9 357.9

3.2x 12.8x 19.4x

FLICKR

FILTER
GF-CV 32.6 1300.0 14864.0

GF-CL
12.2 95.3 1194.7

2.7x 13.7x 12.4x

COUNT(*)
GF-CV 35.3 519.2 4162.5

GF-CL
16.9 23.4 51.7

2.1x 21.4x 80.6x

WIKI

FILTER
GF-CV 35.8 4500.2 236930.2

GF-CL
11.9 1192.5 20329.3

2.9x 3.8x 11.7x

COUNT(*)
GF-CV 32.7 1745.2 109000.2

GF-CL
19.0 27.6 120.4

1.7x 63.2x 905.1x

scans the left most node, extends right to match the entire path,

and a final Filter on the date property of the last extended edge.

A major part of the work in these plans happen at the final join

and filter operation, therefore these plans allow us to measure the

performance benefits of performing computations inside loops and

avoiding data copying in joins. Our results are shown in the FILTER

rows of Table 4. We see that GF-CL outperforms GF-CV by large

margins, between 2.7x and 15.2x.

In our second experiment, we demonstrate the benefits of per-

forming fast aggregations over compressed intermediate results.

We modify the previous queries by removing the predicate and

instead add a return value of count(*). We use the same plans as

before except we change the last Filter operator with a GroupBy
operator. Our results for aggregation are shown in the COUNT(*)

rows of Table 4. Observe that the improvements are much more sig-

nificant now, up to close to three orders of magnitude on Wiki (by

905.1x). The primary advantage of GF-CL is now that the counting

happens on compressed intermediate results.

8.6 Baseline System Comparisons
In our final experiment, we compare the query performance of

GF-CL against GF-RV, Neo4j, which is another row-oriented and

Volcano style GDBMSs, and two columnar RDBMSs, MonetDB and

Vertica, which are not tailored for n-n joins. Our primary goal is

to verify that GF-CL is faster than GF-RV also on an independent

end-to-end benchmark. We also aim to verify that GF-RV, on which

we base our work, is already competitive with or outperforms other

baseline systems on workloads containing n-n joins. We used the

SNB on LDBC10 and JOB, both of which contain n-n join queries.

We used the community version v4.2 of Neo4j GDBMS [47],

the community version 10.0 of Vertica [61] and MonetDB 5 server

11.37.11 [43]. We note that our experiments should not be inter-

preted as one system being more efficient than another. It is difficult

to meaningfully compare completely separate systems, e.g., all base-

line systems have many tunable parameters, and some have more

2500

Percentage of non-NULL values

GF-CL VERTICA MONET NEO4J
(a) LDBC (b) JOB

GF-CL VERTICA MONET NEO4J

102

100

10-1

10-2

10-3

101

R
el

at
iv

e
sl

ow
do

w
n

(in
 lo

g
sc

al
e)

Figure 11: Relative speedup/slowdown of the different
systems in comparison to GF-RV on LDBC10. The boxplots

show the 5th, 25th, 50th, 75th, and 95th percentiles.

efficient enterprise versions. For all baseline systems, we map their

storage to an in-memory filesystem, set number of CPUs to 1 and

disable spilling intermediate files to disk. We maintain 2 copies

of edge tables for Vertica and MonetDB, sorted by the source and

destination vertexIDs, respectively. For GF-RV and GF-CL, we use
the best left-deep plan we could manually pick, which was obvi-

ous in most cases. For example, LDBC path queries start from a

particular vertex ID, so the best join orders start from that vertex

and iteratively extend in the same direction. For Vertica, MonetDB,

and Neo4j, we use the better of the systems’ default plans and the

left-deep that is equivalent to the one we use in GF-RV and GF-CL.

8.6.1 LDBC. We use the LDBC10 dataset. GraphflowDB is a proto-

type system that implements parts of the Cypher language relevant

to our research, so lack several features that LDBC queries exercise.

The system currently has support for select-project-join queries

and a limited form of aggregations, where joins are expressed as

fixed-length subgraph patterns in the MATCH clause. We modified

the Interactive Complex Reads (IC) and Interactive Short Reads (IS)

queries from LDBC [18] in order to be able to run them. Specifically

GraphflowDB does not support variable length queries that search

for joins between a minimum and maximum length, which we set

to the maximum length to make them fixed-length instead, and

shortest path queries, which we removed from the benchmark. We

also removed predicates that check the existence or non-existence

of edges between nodes and the ORDER BY clauses. Our exact

queries can be found in the longer version of our paper [26].

Figure 11a shows the relative speedup/slowdown of the different

systems in comparison to GF-RV. We report individual runtime

numbers of all the queries in the longer version of our paper [26].

As expected, GF-CL is broadly more performant than GF-RV on

LDBC with a median query improvement factor of 2.6x. With the

exception of one query, which slows down a bit, the performance

of every query improves between 1.3x to 8.3x. The improvements

come from several optimizations but primarily from LBP and our

columnar storage. In GF-RV, scanning properties requires checking

equality on property keys, which are avoided in columnar storage,

so we observed large improvements on queries that produce large

intermediate results and perform filters, such as IC05. IC05 has 4 n-

n joins starting from a node and extending in the forward direction

and a predicate on the edges of the third join. GF-CL has several

advantages that become visible here. First, GF-CL’s LBP, unlike
GF-RV, does not copy any edge and neighbour IDs to intermediate

tuples. More importantly, LBP performs filters inside loops and

GF-CL’s single-indexed property pages provides faster access to the
edge properties that are used in the filter than GF-RV’s row-oriented
format. On this query, GF-RV takes 8.9s while GF-CL takes 1.6s.

As we expected, we also found other baseline systems to not be

as performant as GF-CL or GF-RV. In particular, Vertica, MonetDB,

and Neo4j have median slowdown factors of 13.1x, 22.8x, and 46.1x

compared to GF-RV. Although Neo4j performed slightly worse than

other baselines, we also observed that there were some queries

in which it outperformed Vertica and MonetDB (but not GF-RV or
GF-CL) by a large margin. These were queries that started from

a single node, had several n-n joins, but did not generate large

intermediate results, like IS02 or IC06. On such queries, GDBMSs,

both GraphflowDB and Neo4j, have the advantage of using join

operators that use the adjacency list indices to extend a set of partial

matches. This can be highly efficient if the partial matches that are

extended are small in number. For example, the first join of IC06

extends a single Person node, say 𝑝𝑖 , to its two-degree friends. In

SQL, this is implemented as joining a Person table with a Knows
table with a predicate on the Person table to select 𝑝𝑖 . In Vertica or

MonetDB, this join is performed using merge or hash joins, which

requires scanning both Person and Knows tables. Instead, Neo4j

and GraphflowDB only scan the Person table to find 𝑝𝑖 and then

extend 𝑝𝑖 to its neighbours, without scanning all Knows edges. For

this, GF-RV, GF-CL, and Neo4j take 333ms, 113ms, and 515ms, while

Vertica and MonetDB take 4.7s and 2.7s, respectively. We also found

that all baseline systems, including Neo4j, degrade in performance

on queries with many n-n joins that generate large intermediate

results. For example, on IC05 that we reviewed before, Vertica take

1 minute, MonetDB 3.25 minutes, while Neo4j took over 10 minutes.

8.6.2 JOB. JOB queries come in four variants and we used their

first variant. We converted the JOB queries to their Cypher equiv-

alent following our conversion of the dataset. Many of the JOB

queries returned aggregations on strings, such as min(name), where
name is a string column. Since Graphflow supports aggregations

only on numeric types, we removed these aggregations. Our final

queries can be found in the longer version of our paper [26].

Figure 11b shows the relative performance of different systems

in comparison to GF-RV. The individual runtime numbers of each

query can be found in the longer version of our paper [26]. Similar

to our LDBC results, we see GF-CL to improve the performance,

now by 3.1x. Again similar to LDBC, with the exception of one

query, we see consistent speed ups across all queries between 1.5x

and 28.8x. Different from LDBC, we also see queries on which

the improvement factors are much larger, i.e, >20x. In LDBC, the

largest improvement factor was 8.3x. This is expected as most of

the queries in JOB perform star joins while LDBC queries contained

path queries that start from a node with a selective filter. On path

queries, our plans start from a single node and extend in one direc-

tion, in which case only the last extension can truly be factorized,

so be in unflat form. This is because each ListExtend that we use

first flattens the previously extended node. Whereas on star queries,

multiple extensions from the center node can remain unflattened.

Therefore GF-CL’s plans can benefit more from LBP as they can

compress their intermediate tuples more. We also see that similar

to LDBC, GF-RV is more performant than the columnar RDBMSs.

2501

However, these systems are now more competitive. We noticed that

one reason for this is that on star queries, these systems’s default

plans are often bushy plans (27 out of 33 for MonetDB and 26 out

of 33 for Vertica), which produce fewer intermediate tuples than

GF-RV, which does not benefit from factorization and uses left-deep

plans. So these systems now benefit from bushy plans which they

did not in LDBC. In contrast, on LDBC, these systems would also

primarily use left-deep plans (only 2 out of 18 for MonetDB and 4

out of 18 for Vertica were bushy) because on these path queries, it is

better to start from a single highly filtered node table and join iter-

atively in a left-deep plan to match the entire path. Finally, similar

to LDBC, Neo4j is again least competitive of these baselines.

9 RELATEDWORK
Column stores [29, 57, 66, 67] are designed primarily for OLAP

queries that perform aggregations over large amounts of data. Work

on them introduced a set of storage and query processing tech-

niques which include use of positional offsets, schemes for com-

pression, block-based query processing, late materialization and

operations on compressed data, among others. A detailed survey

of these techniques can be found in reference [60]. This paper aims

to integrate some of these techniques into in-memory GDBMSs.

Existing GDBMSs and RDF systems usually store the graph topol-

ogy in a columnar structure. This is done either by using a variant of

adjacency list or CSR. Instead, systems often use row-oriented struc-

tures to store properties, such as an interpreted attribute layout [9].

For example, Neo4j [47] represents the graph topology in adjacency

lists that are partitioned by edge labels and stored in linked-lists,

where each edge record points to the next. Properties of each ver-

tex/edge are stored in a linked-list, where each property record

points to the next and encodes the key, data type, and value of the

property. JanusGraph too [6] stores edges in adjacency lists parti-

tioned by edge labels and properties as consecutive key-value pairs

(a row-oriented format). These native GDBMSs adopt Volcano-style

processors. In contrast, our design adopts columnar structures for

vertex and edge properties and a block-based processor. In addition,

we compress edge and vertex IDs and NULLs.

There are also several GDBMSs that are developed directly on

top of an RDBMS or another database system [54], such as IBM Db2

Graph [58], Oracle Spatial and Graph [54] and SAP’s graph data-

base [55]. These systems can benefit from the columnar techniques

in the underlying RDBMS, which are however not optimized for

graph storage and queries. For example, SAP’s graph engine uses

SAP HANA’s columnar-storage for edge tables but these tables do

not have CSR-like structures for storing edges.

GQ-Fast [38] implements a limited SQL called relationship queries

that support joins of tables similar to path queries, followed with

aggregations. The system stores n-n relationship in tables with CSR-

like indices and heavy-weight compression of lists and has a fully

pipelined query processor that uses query compilation. Therefore,

GQ-Fast studies how some techniques in GDBMSs, specifically joins

using adjacency lists, can be done in RDBMS. In contrast, we focus

on studying how some techniques from columnar RDBMSs can be

integrated into GDBMSs. We intended to but could not compare

against GQ-Fast because the system supports a very limited set of

queries (e.g., none of the LDBC queries are supported).

Several RDF systems also use columnar structures to store RDF

data. Reference [4] uses a set of columns, where each column store

is a set of (subject, object) pairs for a unique predicate. However,

this storage is not as optimized as the storage in GDBMSs, e.g.,

the edges between entities are not stored in native CSR or adja-

cency list format. Hexastore [62] improves on the idea of predicate

partitioning by having a column for each RDF element (subject,

predicate or object) and sorting it in 2 possible ways in B+ trees.

This is similar but not as efficient as double indexing of adjacency

lists in GDBMSs. RDF-3X [50] is an RDF system that stores a large

triple table that is indexed in 6 B+ tree indexes over each column.

Similarly, this storage is not as optimized as the native graph stor-

ages found in GDBMSs. Similar to our Guideline 3, reference [49]

also observes that graphs have structure, and certain predicates in

RDF databases co-exist together in a node. This is similar to the

property co-occurrence structure we exploit, and is exploited in the

RDF 3-X system for better cardinality estimation.

Several novel storage techniques for storing graphs are opti-

mized for write-heavy workloads, such as streaming. These works

propose data structures that try to achieve the sequential read ca-

pabilities of CSR while being write-optimized. Examples of this

include LiveGraph [65], Aspen [16], and LLAMA [39]. We focus

on a read-optimized system setting and use CSR to store the graph

topology but these techniques are complementary to our work.

Our list groups represent intermediate results in a factorized

form. Prior work on factorized representations in RDBMSs, specif-

ically FDB [7, 8], represents intermediate data as tries, and have

operators that transform tries into other tries. Unlike traditional

processors, processing is not pipelined and all intermediate results

arematerialized. Instead, operators in LBP are variants of traditional

block-based operators and perform computations in a pipelined

fashion on batches of lists/arrays of data. This paper focuses on

integration of columnar storage and query processing techniques

into GDBMSs and does not studies how to integrate more advanced

factorized processing techniques inside GDBMS.

10 CONCLUSIONS
Columnar RDBMSs are read-optimized analytical systems that have

introduced several storage and query processing techniques to im-

prove the scalability and performances of RDBMSs. We studied

the integration of such techniques into GDBMSs, which are also

read-optimized analytical systems. While some techniques can be

directly applied to GDBMSs, adaptation of others can be signifi-

cantly sub-optimal in terms of space and performance. In this paper,

we first outlined a set of guidelines and desiderata for designing the

storage layer and query processor of GDBMSs, based on the typical

access patterns in GDBMSs which are significantly different than

the typical workloads of columnar RDBMSs. We then presented

our design of columnar storage, compression, and query processing

techniques that are optimized for in-memory GDBMSs. Specifically,

we introduced a novel list-based query processor, which avoids

expensive data copies of traditional block-based processors and

avoids materialization of adjacency lists in blocks, a new data struc-

ture we call single-indexed property pages and an accompanying

edge ID scheme, and a new application of Jacobson’s bit vector

index for compressing NULL and empty lists.

2502

REFERENCES
[1] Daniel J. Abadi. 2007. Column Stores for Wide and Sparse Data. In Third Biennial

Conference on Innovative Data Systems Research, CIDR 2007. 292–297. http:

//cidrdb.org/cidr2007/papers/cidr07p33.pdf

[2] Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating Com-

pression and Execution in Column-Oriented Database Systems. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2006. 671–682. https://doi.org/10.1145/1142473.1142548

[3] Daniel J. Abadi, Samuel Madden, and Nabil Hachem. 2008. Column-Stores vs.

Row-Stores: How Different Are They Really?. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2008. 967–980. https:

//doi.org/10.1145/1376616.1376712

[4] Daniel J. Abadi, Adam Marcus, Samuel Madden, and Katherine J. Hollenbach.

2007. Scalable Semantic Web Data Management Using Vertical Partitioning. In

Proceedings of the 33rd International Conference on Very Large Data. 411–422.
http://www.vldb.org/conf/2007/papers/research/p411-abadi.pdf

[5] Amazon. 2020. Amazon Neptune. https://aws.amazon.com/neptune/. Last

Accessed July 25, 2021.

[6] JanusGraph Authors. 2020. JanusGraph. https://janusgraph.org. Last Accessed

July 25, 2021.

[7] Nurzhan Bakibayev, Tomás Kociský, Dan Olteanu, and Jakub Zavodny. 2013.

Aggregation and Ordering in Factorised Databases. Proceedings of the VLDB
Endowment 6, 14 (2013), 1990–2001. http://www.vldb.org/pvldb/vol6/p1990-

zavodny.pdf

[8] Nurzhan Bakibayev, Dan Olteanu, and Jakub Zavodny. 2012. FDB: A Query

Engine for Factorised Relational Databases. Proceedings of the VLDB Endowment
5, 11 (2012), 1232–1243. http://vldb.org/pvldb/vol5/p1232_nurzhanbakibayev_

vldb2012.pdf

[9] Jennifer L. Beckmann, Alan Halverson, Rajasekar Krishnamurthy, and Jeffrey F.

Naughton. 2006. Extending RDBMSs to Support Sparse Datasets using an Inter-

preted Attribute Storage Format. In Proceedings of the 22nd International Confer-
ence on Data Engineering, ICDE 2006. 58. https://doi.org/10.1109/ICDE.2006.67

[10] Peter Boncz. 2002. Monet: A Next-Generation Database Kernel for Query-Intensive
Applications. Ph.D. Dissertation. Universiteit van Amsterdam. https://ir.cwi.nl/

pub/14832/14832A.pdf

[11] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-

Pipelining Query Execution. In Second Biennial Conference on Innovative Data
Systems Research, CIDR 2005. 225–237. http://cidrdb.org/cidr2005/papers/P19.pdf

[12] Angela Bonifati, George H. L. Fletcher, Hannes Voigt, and Nikolay Yakovets. 2018.

Querying Graphs. https://doi.org/10.2200/S00873ED1V01Y201808DTM051

[13] Angela Bonifati, Peter Furniss, Alastair Green, Russ Harmer, Eugenia Oshurko,

and Hannes Voigt. 2019. Schema Validation and Evolution for Graph Databases.

In Conceptual Modeling - 38th International Conference, ER 2019 (Lecture Notes
in Computer Science), Vol. 11788. 448–456. https://doi.org/10.1007/978-3-030-

33223-5_37

[14] Prosenjit Bose, Meng He, Anil Maheshwari, and Pat Morin. 2009. Succinct

Orthogonal Range Search Structures on a Grid with Applications to Text Indexing.

In Algorithms and Data Structures, 11th International Symposium, WADS 2009
(Lecture Notes in Computer Science), Vol. 5664. 98–109. https://doi.org/10.1007/978-
3-642-03367-4_9

[15] DGraph. 2020. DGraph Github Repository. https://github.com/dgraph-io/dgraph.

Last Accessed July 25, 2021.

[16] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2019. Low-latency Graph

Streaming using Compressed Purely-functional Trees. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2019. 918–934. https://doi.org/10.1145/3314221.3314598

[17] DuckDB. 2020. DuckDB. https://duckdb.org/. Last Accessed July 25, 2021.

[18] Orri Erling, Alex Averbuch, Josep Lluís Larriba-Pey, Hassan Chafi, Andrey Gu-

bichev, Arnau Prat-Pérez, Minh-Duc Pham, and Peter A. Boncz. 2015. The LDBC

Social Network Benchmark: Interactive Workload. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, SIGMOD 2015.
619–630. https://doi.org/10.1145/2723372.2742786

[19] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-

daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and

Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs.

In Proceedings of the 2018 ACM SIGMOD International Conference on Management
of Data, SIGMOD 2018. 1433–1445. https://doi.org/10.1145/3183713.3190657

[20] Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 1998. Compressing

Relations and Indexes. In Proceedings of the Fourteenth International Conference on
Data Engineering, ICDE 1998. 370–379. https://doi.org/10.1109/ICDE.1998.655800

[21] Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. 1992. New Indices

for Text: Pat Trees and Pat Arrays. In Information Retrieval: Data Structures &
Algorithms. 66–82.

[22] Goetz Graefe. 1994. Volcano - An Extensible and Parallel Query Evaluation

System. IEEE Transactions on Knowledge and Data Engineering, TKDE 6, 1 (1994),

120–135. https://doi.org/10.1109/69.273032

[23] G. Graefe and L.D. Shapiro. 1991. Data Compression and Database Performance.

In Proceedings of the 1991 Symposium on Applied Computing. 22–27. https:

//doi.org/10.1109/SOAC.1991.143840

[24] Graphflow. 2020. GraphflowDB Source Code. https://github.com/queryproc/

optimizing-subgraph-queries-combining-binary-and-worst-case-optimal-

joins/. Last Accessed July 25, 2021.

[25] Graphflow. 2021. GraphflowDB Columnar Techniques. https://github.com/

graphflow/graphflow-columnar-techniques. Last Accessed July 25, 2021.

[26] Pranjal Gupta, Amine Mhedhbi, and Semih Salihoglu. 2021. Columnar Storage
and List-based Processing for Graph Database Management Systems. Technical
Report. https://github.com/graphflow/graphflow-columnar-techniques/blob/

master/paper.pdf

[27] Olaf Hartig and Jan Hidders. 2019. Defining Schemas for Property Graphs

by using the GraphQL Schema Definition Language. In Proceedings of the 2nd
Joint International Workshop on Graph Data Management Experiences & Systems
(GRADES) and Network Data Analytics (NDA), GRADES-NDA 2019. 6:1–6:11. https:
//doi.org/10.1145/3327964.3328495

[28] Sándor Héman, Marcin Zukowski, Niels J. Nes, Lefteris Sidirourgos, and Peter A.

Boncz. 2010. Positional Update Handling in Column Stores. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, SIGMOD 2010.
543–554. https://doi.org/10.1145/1807167.1807227

[29] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd Mullender,

and Martin L. Kersten. 2012. MonetDB: Two Decades of Research in Column-

oriented Database Architectures. IEEE Data Engineering Bulletin 35, 1 (2012),

40–45. http://sites.computer.org/debull/A12mar/monetdb.pdf

[30] Guy Jacobson. 1989. Space-efficient Static Trees and Graphs. In 30th Annual
Symposium on Foundations of Computer Science, FOCS 1989. 549–554. https:

//doi.org/10.1109/SFCS.1989.63533

[31] Guy Jacobson. 1989. Succinct Static Data Structures. Ph.D. Dissertation. Carnegie
Mellon University.

[32] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedhbi, Jeremy Chen, and

Semih Salihoglu. 2017. Graphflow: An Active Graph Database. In Proceedings of
the 2017 ACM SIGMOD International Conference on Management of Data, SIGMOD
2017. 1695–1698. https://doi.org/10.1145/3035918.3056445

[33] Jérôme Kunegis. 2013. KONECT: The Koblenz Network Collection. In 22nd
International World Wide Web Conference, WWW 2013. 1343–1350. https://doi.

org/10.1145/2487788.2488173

[34] Jérôme Kunegis. 2021. Wikipedia Dynamic (de), (Konect). http://konect.cc/

networks/link-dynamic-dewiki/. Last Accessed July 25, 2021.

[35] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,

and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proceed-
ings of the VLDB Endowment 9, 3 (2015), 204–215. http://www.vldb.org/pvldb/

vol9/p204-leis.pdf

[36] Daniel Lemire and Leonid Boytsov. 2015. Decoding Billions of Integers per

Second through Vectorization. Software: Practice and Experience 45, 1 (2015), 1–29.
https://doi.org/10.1002/spe.2203

[37] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. 2005. Graphs Over

Time: Densification Laws, Shrinking Diameters and Possible Explanations. In

Proceedings of the 11th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, SIGKDD 2005. 177–187. https://doi.org/10.1145/

1081870.1081893

[38] Chunbin Lin, Benjamin Mandel, Yannis Papakonstantinou, and Matthias Springer.

2016. Fast In-Memory SQL Analytics on Typed Graphs. Proceedings of the VLDB
Endowment 10, 3 (2016), 265–276. http://www.vldb.org/pvldb/vol10/p265-lin.pdf

[39] Peter Macko, Virendra J. Marathe, Daniel W. Margo, and Margo I. Seltzer. 2015.

LLAMA: Efficient graph analytics using Large Multiversioned Arrays. In 31st
IEEE International Conference on Data Engineering, ICDE 2015. 363–374. https:

//doi.org/10.1109/ICDE.2015.7113298

[40] Memgraph. 2020. Memgraph. https://memgraph.com/. Last Accessed July 25,

2021.

[41] Amine Mhedhbi and Semih Salihoglu. 2019. Optimizing Subgraph Queries by

Combining Binary and Worst-Case Optimal Joins. Proceedings of the VLDB
Endowment 12, 11 (2019), 1692–1704. http://www.vldb.org/pvldb/vol12/p1692-

mhedhbi.pdf

[42] Alan Mislove, Hema Swetha Koppula, Krishna P. Gummadi, Peter Druschel, and

Bobby Bhattacharjee. 2008. Growth of the Flickr Social Network. In Proceedings
of the first Workshop on Online Social Networks, WOSN 2008. 25–30. https:

//doi.org/10.1145/1397735.1397742

[43] MonetDB. 2020. MonetDB source code, (Jun2020-SP1). https://github.com/

MonetDB/MonetDB/releases/tag/Jun2020_SP1_release. Last Accessed July 25,

2021.

[44] Gonzalo Navarro and Veli Mäkinen. 2007. Compressed Full-Text Indexes. Comput.
Surveys 39, 1 (2007), 2. https://doi.org/10.1145/1216370.1216372

[45] Gonzalo Navarro, Yakov Nekrich, and Luís M. S. Russo. 2013. Space-efficient

Data-Analysis Queries on Grids. Theoretical Computer Science 482 (2013), 60–72.
https://doi.org/10.1016/j.tcs.2012.11.031

[46] Neo4j. 2020. Neo4j Blog on Deletions. https://neo4j.com/developer/kb/how-

deletes-workin-neo4j/. Last Accessed July 25, 2021.

2503

http://cidrdb.org/cidr2007/papers/cidr07p33.pdf
http://cidrdb.org/cidr2007/papers/cidr07p33.pdf
https://doi.org/10.1145/1142473.1142548
https://doi.org/10.1145/1376616.1376712
https://doi.org/10.1145/1376616.1376712
http://www.vldb.org/conf/2007/papers/research/p411-abadi.pdf
https://aws.amazon.com/neptune/
https://janusgraph.org
http://www.vldb.org/pvldb/vol6/p1990-zavodny.pdf
http://www.vldb.org/pvldb/vol6/p1990-zavodny.pdf
http://vldb.org/pvldb/vol5/p1232_nurzhanbakibayev_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1232_nurzhanbakibayev_vldb2012.pdf
https://doi.org/10.1109/ICDE.2006.67
https://ir.cwi.nl/pub/14832/14832A.pdf
https://ir.cwi.nl/pub/14832/14832A.pdf
http://cidrdb.org/cidr2005/papers/P19.pdf
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://doi.org/10.1007/978-3-030-33223-5_37
https://doi.org/10.1007/978-3-030-33223-5_37
https://doi.org/10.1007/978-3-642-03367-4_9
https://doi.org/10.1007/978-3-642-03367-4_9
https://github.com/dgraph-io/dgraph
https://doi.org/10.1145/3314221.3314598
https://duckdb.org/
https://doi.org/10.1145/2723372.2742786
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1109/ICDE.1998.655800
https://doi.org/10.1109/69.273032
https://doi.org/10.1109/SOAC.1991.143840
https://doi.org/10.1109/SOAC.1991.143840
https://github.com/queryproc/optimizing-subgraph-queries-combining-binary-and-worst-case-optimal-joins/
https://github.com/queryproc/optimizing-subgraph-queries-combining-binary-and-worst-case-optimal-joins/
https://github.com/queryproc/optimizing-subgraph-queries-combining-binary-and-worst-case-optimal-joins/
https://github.com/graphflow/graphflow-columnar-techniques
https://github.com/graphflow/graphflow-columnar-techniques
https://github.com/graphflow/graphflow-columnar-techniques/blob/master/paper.pdf
https://github.com/graphflow/graphflow-columnar-techniques/blob/master/paper.pdf
https://doi.org/10.1145/3327964.3328495
https://doi.org/10.1145/3327964.3328495
https://doi.org/10.1145/1807167.1807227
http://sites.computer.org/debull/A12mar/monetdb.pdf
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1145/3035918.3056445
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/2487788.2488173
http://konect.cc/networks/link-dynamic-dewiki/
http://konect.cc/networks/link-dynamic-dewiki/
http://www.vldb.org/pvldb/vol9/p204-leis.pdf
http://www.vldb.org/pvldb/vol9/p204-leis.pdf
https://doi.org/10.1002/spe.2203
https://doi.org/10.1145/1081870.1081893
https://doi.org/10.1145/1081870.1081893
http://www.vldb.org/pvldb/vol10/p265-lin.pdf
https://doi.org/10.1109/ICDE.2015.7113298
https://doi.org/10.1109/ICDE.2015.7113298
https://memgraph.com/
http://www.vldb.org/pvldb/vol12/p1692-mhedhbi.pdf
http://www.vldb.org/pvldb/vol12/p1692-mhedhbi.pdf
https://doi.org/10.1145/1397735.1397742
https://doi.org/10.1145/1397735.1397742
https://github.com/MonetDB/MonetDB/releases/tag/Jun2020_SP1_release
https://github.com/MonetDB/MonetDB/releases/tag/Jun2020_SP1_release
https://doi.org/10.1145/1216370.1216372
https://doi.org/10.1016/j.tcs.2012.11.031
https://neo4j.com/developer/kb/how-deletes-workin-neo4j/
https://neo4j.com/developer/kb/how-deletes-workin-neo4j/

[47] Neo4j. 2020. Neo4j Community Edition. https://neo4j.com/download-center/

#community. Last Accessed July 25, 2021.

[48] Neo4j. 2020. Neo4j Property Graph Model. https://neo4j.com/developer/graph-

database. Last Accessed July 25, 2021.

[49] Thomas Neumann and Guido Moerkotte. 2011. Characteristic Sets: Accurate

Cardinality Estimation for RDF Queries with Multiple Joins. In Proceedings of the
27th International Conference on Data Engineering, ICDE 2011. 984–994. https:

//doi.org/10.1109/ICDE.2011.5767868

[50] Thomas Neumann and Gerhard Weikum. 2010. The RDF-3X Engine for Scalable

Management of RDF Data. VLDB Journal 19, 1 (2010), 91–113. https://doi.org/10.

1007/s00778-009-0165-y

[51] Dan Olteanu and Maximilian Schleich. 2016. Factorized Databases. SIGMOD
Record 45, 2 (2016), 5–16. https://doi.org/10.1145/3003665.3003667

[52] Dan Olteanu and Jakub Závodný. 2015. Size Bounds for Factorised Represen-

tations of Query Results. ACM Transactions on Database Systems (TODS) 40, 1
(2015), 2:1–2:44. https://doi.org/10.1145/2656335

[53] Oracle. 2020. Oracle In-Memory Column Store Architecture. https://tinyurl.com/

vkvb6p6. Last Accessed July 25, 2021.

[54] Oracle. 2020. Oracle Spatial and Graph. https://www.oracle.com/database/

technologies/spatialandgraph.html. Last Accessed July 25, 2021.

[55] Michael Rudolf, Marcus Paradies, Christof Bornhövd, and Wolfgang Lehner. 2013.

The Graph Story of the SAP HANA Database. In Datenbanksysteme für Business,
Technologie und Web (BTW), 15. Fachtagung des GI-Fachbereichs "Datenbanken
und Informationssysteme" (DBIS) (LNI), Vol. P-214. 403–420. https://dl.gi.de/20.

500.12116/17334

[56] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer

Özsu. 2020. The Ubiquity of Large Graphs and Surprising Challenges of Graph

Processing: Extended Survey. VLDB Journal 29, 2-3 (2020), 595–618. https:

//doi.org/10.1007/s00778-019-00548-x

[57] Mike Stonebraker, Daniel J. Abadi, AdamBatkin, XuedongChen,Mitch Cherniack,

Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth J. O’Neil,

Patrick E. O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. 2019. C-store: A

Column-Oriented DBMS. In Making Databases Work: the Pragmatic Wisdom of
Michael Stonebraker. 491–518. https://doi.org/10.1145/3226595.3226638

[58] Yuanyuan Tian, En Liang Xu, Wei Zhao, Mir Hamid Pirahesh, Suijun Tong,

Wen Sun, Thomas Kolanko, Md. Shahidul Haque Apu, and Huijuan Peng. 2020.

IBM Db2 Graph: Supporting Synergistic and Retrofittable Graph Queries Inside

IBM Db2. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, SIGMOD 2020. 345–359. https://doi.org/10.1145/3318464.

3386138

[59] TigerGraph. 2020. TigerGraphDB. https://www.tigergraph.com. Last Accessed

July 25, 2021.

[60] Syunsuke Uemura, Toshitsugu Yuba, Akio Kokubu, Ryoichi Ooomote, and Yasuo

Sugawara. 1980. The Design and Implementaion of a Magnetic-Bubble Database

Machine. In Information Processing, Proceedings of the 8th IFIP Congress 1980.
433–438.

[61] Vertica. 2020. Vertica 10.0.x Documentation. https://www.vertica.com/docs/10.0.

x/HTML/Content/Home.html. Last Accessed July 25, 2021.

[62] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. 2008. Hexastore:

Sextuple Indexing for Semantic Web Data Management. Proceedings of the VLDB
Endowment 1, 1 (2008), 1008–1019. http://www.vldb.org/pvldb/vol1/1453965.pdf

[63] Till Westmann, Donald Kossmann, Sven Helmer, and Guido Moerkotte. 2000.

The Implementation and Performance of Compressed Databases. SIGMOD Record
29, 3 (2000), 55–67. https://doi.org/10.1145/362084.362137

[64] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G. Andersen, Michael

Kaminsky, Kimberly Keeton, and Andrew Pavlo. 2020. Succinct Range Filters.

ACM Transactions on Database Systems (TODS) 45, 2 (2020), 5:1–5:31. https:

//doi.org/10.1145/3375660

[65] Xiaowei Zhu, Marco Serafini, Xiaosong Ma, Ashraf Aboulnaga, Wenguang Chen,

and Guanyu Feng. 2020. LiveGraph: A Transactional Graph Storage System with

Purely Sequential Adjacency List Scans. Proceedings of the VLDB Endowment 13,
7 (2020), 1020–1034. http://www.vldb.org/pvldb/vol13/p1020-zhu.pdf

[66] Marcin Zukowski and Peter A. Boncz. 2012. From X100 to Vectorwise: Opportuni-

ties, Challenges and ThingsMost Researchers Do Not Think About. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2012. 861–862. https://doi.org/10.1145/2213836.2213967

[67] Marcin Zukowski and Peter A. Boncz. 2012. Vectorwise: Beyond Column Stores.

IEEE Data Engineering Bulletin 35, 1 (2012), 21–27. http://sites.computer.org/

debull/A12mar/vectorwise.pdf

[68] Marcin Zukowski, Sándor Héman, Niels Nes, and Peter A. Boncz. 2006. Super-

Scalar RAM-CPU Cache Compression. In Proceedings of the 22nd International
Conference on Data Engineering, ICDE 2006. 59. https://doi.org/10.1109/ICDE.

2006.150

2504

https://neo4j.com/download-center/#community
https://neo4j.com/download-center/#community
https://neo4j.com/developer/graph-database
https://neo4j.com/developer/graph-database
https://doi.org/10.1109/ICDE.2011.5767868
https://doi.org/10.1109/ICDE.2011.5767868
https://doi.org/10.1007/s00778-009-0165-y
https://doi.org/10.1007/s00778-009-0165-y
https://doi.org/10.1145/3003665.3003667
https://doi.org/10.1145/2656335
https://tinyurl.com/vkvb6p6
https://tinyurl.com/vkvb6p6
https://www.oracle.com/database/technologies/spatialandgraph.html
https://www.oracle.com/database/technologies/spatialandgraph.html
https://dl.gi.de/20.500.12116/17334
https://dl.gi.de/20.500.12116/17334
https://doi.org/10.1007/s00778-019-00548-x
https://doi.org/10.1007/s00778-019-00548-x
https://doi.org/10.1145/3226595.3226638
https://doi.org/10.1145/3318464.3386138
https://doi.org/10.1145/3318464.3386138
https://www.tigergraph.com
https://www.vertica.com/docs/10.0.x/HTML/Content/Home.html
https://www.vertica.com/docs/10.0.x/HTML/Content/Home.html
http://www.vldb.org/pvldb/vol1/1453965.pdf
https://doi.org/10.1145/362084.362137
https://doi.org/10.1145/3375660
https://doi.org/10.1145/3375660
http://www.vldb.org/pvldb/vol13/p1020-zhu.pdf
https://doi.org/10.1145/2213836.2213967
http://sites.computer.org/debull/A12mar/vectorwise.pdf
http://sites.computer.org/debull/A12mar/vectorwise.pdf
https://doi.org/10.1109/ICDE.2006.150
https://doi.org/10.1109/ICDE.2006.150

