Modern Techniques for Querying Graph-Structured Relations:
Foundations, System Implementations, and Open Challenges

Amine Mhedhbi

University of Waterloo
amine.mhedhbi@uwaterloo.ca

ABSTRACT

The last decade has seen an emergence of numerous specialized
graph DBMSs (GDBMSs) as well as graph-optimized extensions of
RDBMSs. In addition, several query processing techniques, such
as worst-case optimal join algorithms and factorized query pro-
cessing, have been introduced in the context of RDBMSs, which
find their best applications on graph workloads. In this tutorial,
we review the recent advances in query processing techniques for
graph workloads. For each technique, we first overview the theoret-
ical foundations. Then, we overview how DBMSs implement these
techniques. Finally, we discuss the open challenges for existing
implementation approaches.

PVLDB Reference Format:

Amine Mhedhbi and Semih Salihoglu. Modern Techniques for Querying
Graph-Structured Relations. PVLDB, 15(12): 3762 - 3765, 2022.
doi:10.14778/3554821.3554894

1 INTRODUCTION

Querying graph-structured data is integral to a wide range of ana-
lytical applications such as recommendations in social networks,
fraud detection in financial transaction networks, and inference
over knowledge bases [21]. There are two primary defining fea-
tures of graph workloads: (i) prevalence of many-to-many (m-n)
relations across entities; and (ii) prevalence of complex join-heavy
queries over these relations. The joins in these queries can have
several different structures: (i) cyclic, such as when finding cliques
of phone calls; (ii) acyclic, such as when finding long chains of finan-
cial transactions; or (iii) recursive, such as when finding shortest
connections between users in social networks. This contrasts with
traditional relational workloads, such as those found in the popular
TPC benchmarks, that contain many primary-foreign (PK-FK) key
joins. The combination of complex join structures in these queries
and the m-n cardinality of relations in these datasets pose serious
challenges for traditional query processors. For example, queries
can generate large intermediate relations (IRs), which often cannot
be handled by traditional techniques.

The last decade has seen an emergence of numerous prototype
and commercial DBMSs that are optimized for graph workloads.
These include specialized systems such as GDBMSs that adopt the
property graph data model e.g., Neo4j, TigerGraph, Avantgraph,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554894

3762

Semih Salihoglu
University of Waterloo
semih.salihoglu@uwaterloo.ca

GraphflowDB [11], earlier RDF systems e.g., RDF-3x [18], and graph-
optimized extensions of RDBMSs, e.g., GR-Fusion [8], GRainDB [10],
and GQ-Fast [13]. The query processors of these systems contain
specialized techniques, such as pointer-based joins that rely on dense
system-level integer IDs, worst-case optimal join (WCOJ) algorithms
or factorized query processing that limit IR sizes.

This tutorial covers 4 topics: (i) pointer-based joins and core
binary joins; (ii) WCOJ algorithms; (iii) factorization; and (iv) re-
cursive join query evaluation. We overview: (i) the foundations of
these techniques when appropriate; (ii) the current design choices
different DBMSs have made to integrate these techniques; and (iii)
the challenges for existing implementation approaches. Our goal
is to bring a structure to this vast theory and system-oriented lit-
erature. For reference, Table 1 shows the query processors of the
systems that we cover and the implementation design choices.

2 ORGANIZATIONAL INFORMATION

e Duration: This 3 hour tutorial covers: (1) Graph workloads
overview: 15 minutes; (2) Pointer-based joins (Section 3): 45 min-
utes; (3) WCOJ algorithms (Section 4): 45 minutes; (4) Factorized
query processing (Section 5): 45 minutes; and (5) Techniques for
recursive queries (Section 6): 30 minutes.

o Intended Audience and Prerequisites: The tutorial is intended
for general database researchers and Ph.D. students, especially
systems-oriented ones, and DBMS developers. We do not require
any prior knowledge and will provide any necessary background.

o Prior Tutorials: We have not given a prior tutorial on the topics
we are proposing here.

We begin the tutorial by providing a working definition of graph

workloads and examples queries. Remaining sections cover (2)-(4).

3 POINTER- VS VALUE-BASED JOINS

We next give a brief historical overview of DBMSs that adopt graph-
based data models, discussing the earliest IDS system, RDF systems,
and modern GDBMSs which adopt the property graph model. We
then cover our first main topic of pointer-based joins in GDBMSs
which perform joins between node records along predefined edge
records.GDBMSs use system-level dense integer IDs of nodes, which
serve as pointers to look up neighbours. This contrasts with and
can be more efficient than value-based joins on arbitrary attributes
in RDBMSs.

3.1 System Implementations

We will next discuss pointer-based join implementations.

Native GDBMSs: There are three components to implementing

pointer-based joins in GDBMSs:

o System-level dense integer node IDs: node records are given
consecutive IDs starting from 0 to |V| for an input graph G(V,E).

https://doi.org/10.14778/3554821.3554894
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554894

Table 1: DBMSs and technique implementations. X indicates absence of feature. N/A indicates: "feature is not specified".
INL]J, HJ, and M] refer to Index Nested Loop Join, Hash Join, and Merge Join, respectively.

DBMS ‘ Join Type ‘ Core Join Alg ‘ WCOJ Algo ‘ Data Representation Scheme ‘ Recursive Joins
Umbra [17] Value-based HJ Hash-based Flat N/A
GrainDB [10] Value- and Pointer-based HJ Hash-based Flat a-RA
EmptyHeaded [1] Value-based INLJ Sorted indexes Flat X
GQ-Fast [13] Value- and Pointer-based INLJ X Flat X
GR-Fusion [8] Value- and Pointer-based INLJ X Flat a-RA
GraphflowDB [11] Pointer-based HJ & INLJ Sorted indexes | F-representations (restricted) X
AvantGraph Pointer-based N/A Sorted indexes N/A WaveGuide
FDB [5] Value-based INLJ Sorted indexes F-representations X
Neodj Pointer-based HJ & INL] X Flat X
RDF-3X [18] Value-based MJ X Flat X

e Adjacency list indexes: the edge records are indexed using the
system-level node IDs providing constant-time access to all in-
coming/outgoing “neighbours” of a node.

o Index Nested Loop Joins (INLJ): The operator would use adja-
cency list indexes e.g., Expand operator in Neo4;.

Another adopted approach is that of the RDF-3x system which

indexes triples and hence IDs in B+ trees and uses merge join (MJ).

GR-Fusion [8] and GQ-Fast [13]: GR-Fusion and GQ-Fast have

proposed extending RDBMSs with pointer-based joins following

the GDBMS approach by defining graph views which indicate the
relations that correspond to nodes and edges. These views are
indexed in adjacency list indexes using row identifiers (RIDs).

GRainDB [10]: An extension of DuckDB with pointer-based joins

that proposes a more general approach to speed up PK-FK joins.

The components in this implementation are:

e RID Materialization: Similar to prior approaches, GRainDB uses
system-level RIDs. If users specify an equality join from a table
F to P such that the join columns of F are foreign keys to P, then
the system adds a RID column to F that contains for each row
r¢ € F, the RID of the row rp € P to which r has the foreign key.

e Sideways Information Passing (SIP): GRainDB uses the hash
join (HJ) operator of DuckDB but modifies it to perform SIP to
evaluate the join of F and P using RIDs.

e RID Indexes: Indexing the RID values in F in adjacency list in-
dexes allows the system to pass information from P to F.

In general, INLJ and HJ provides different benefits: HJ is useful
when predicates on the relationship table are selective, while INLJ
is useful when predicates on source entities are selective.

3.2 Open Challenges

We will discuss two open challenges: (i) INLJ, HJ, and MJ are the
default operators of different systems and a comprehensive under-
standing of which operator to use under which settings is needed.
(ii) Cost-based optimization: In every RDBMS integration, a portion
of the query is identified and planned separately to use pointer-
based joins in a rule-based manner. A holistic cost-based approach
has so-far not been described in the literature.

4 WORST-CASE OPTIMAL JOINS

Irrespective of the core join operator systems use and whether joins
are pointer or value based, the predominant join plans of existing
GDBMSs and RDBMSs are binary join (Bf) plans. These are plans
whose join operators join two base or intermediate relations at

3763

a time until all relations are joined. The next part of our tutorial
discusses an important shortcoming of BJ plans for cyclic queries
when joins are over m-n relations.

4.1 Foundations

Let QA be the triangle self-join query, where F is the m-n Follows(
from, to) relationin a social network: Q :=F(uy,uz) x F(uz,us)
X F(us,us). In graph terms, BJ plans correspond to evaluating
the joins one query edge at a time. Such a plan first finds open
triangles on Follows edges and then closes the triangle. When
joins are over m-n relations, intermediate relations can be very
large. This was made formal in the seminal paper of Atserias et
al. [4], that put a tight bound, called the AGM bound, on the worst-
case size of join queries when only the sizes of the input relations
are known. The AGM bound of Qa over a relation with N tuples is
N5, However there are input datasets where any binary join plan
generates Q(N?) intermediate results for Q.

This asymptotic gap was fixed in the new WCO]J algorithms [19].
Instead of joining Q table(s) at a time using binary joins, WCQO]J
algorithms join Q an attribute at a time using multiway join opera-
tors. The attributes A = {ay, ...,an } of Q are given an ordering e.g.,
(a1, az, ...,an). Then, at step i, (ay, ..., a;) prefixes are extended to
the a;41 attribute by obtaining a;+1 sets from each relation R; that
contains aj4+1 and any of the {aj, ..., a; } attributes and intersecting
these sets. On Qa, a WCQ]J algorithm would extend all edges to
triangles without ever computing open triangles.

We will cover the shortcomings of BJs, the AGM bound, and the
WCQJ algorithms.

4.2 System Implementations

We will next cover the two broad approaches to integrate WCQO]J
algorithms into DBMSs.

4.2.1 Sorted Index Approach. Most implementations use precom-
puted sorted indexes each of which sorts relations on different
attribute permutations. The first documented WCQ]J algorithm
is of the Leapfrog Trie-Join (LFTJ) [22] in LogicBlox [3]. Emp-
tyHeaded [1] (EH) is a prototype RDBMS and adopts a similar
approach. In contrast to LFTJ, EH also uses BJs in addition to WCQO]J
algorithms. Specifically, EH optimizes queries using generalized
hypertree decomposition (GHD). Two important limitations of EH’s
approach is: (i) it does not optimize the ordering of the attributes
using Generic Join (GJ); and (ii) the computation is broken down
into two phases where multiway joins happen before BJs.

Addressing these shortcomings of EH was the main objective
of recent research [15, 16]. This work described a GDBMS inte-
gration of WCQJ algorithms in GraphflowDB. The approach of
GraphflowDB, which also uses sorted indexes, has two primary dif-
ferences compared to EH: (i) GraphflowDB plans seamlessly mixes
binary join and WCOJ-style intersection based operators; and (ii)
the system optimizes the choice of picks attribute orderings using
a new cost metric called intersection cost, and can adaptively pick
the attribute orderings during query evaluation.

4.2.2 Hash-trie Index Approach of Umbra [17]: This approach stems
from the fact that maintaining sorted indices is very expensive and
is not update friendly. Umbra computes the trie indexes required
by its WCO]J algorithms on the fly when a query is issued. These
indices are built as nested hash tables, where each level corresponds
to exactly one join key attribute and the leaf nodes are sorted using
a linked list structure. The system has a new HashTrieJoin opera-
tor that takes in hash-trie indexes of k > 2 relations Ry, ..., R, and
joins them using GJ-style algorithm. The comparisons during GJ
evaluation are based on hash values and not actual key values.

4.3 Open Challenges

We will discuss two open challenges: (i) the current two integra-
tion approaches suggest potential benefit from a hybrid database
cracking style [9] of continuous physical reorganization or building
of sorted indexes on demand as queries arrive; and (ii) the theory
community has advanced the theory of WCQO]J algorithms to beyond
WCO7s [12] that have stronger optimality guarantees. These algo-
rithms intersect gaps in the trie indices instead of actual tuples. How
to integrate them into DBMSs is a promising research direction.

5 FACTORIZED QUERY PROCESSING

We next discuss factorized representations of relations [20]. While
WCQJ algorithms reduce intermediate relation sizes for cyclic queries,
factorization reduces IR sizes primarily for acyclic queries.

5.1 Foundations

Traditional query processors use flat representations of relations
both for storage and query processing. When evaluating join queries
over m-n relations, this may lead to redundancy.

We present factorization through examples. Let Q,F be a 2-hop
query: F(up,uz) x F(uz,us) where F is the m-n Follows relation
in a social network. We further evaluate the query on an input graph
where {01, ...,un } have outgoing edges to vy, which has outgoing
edges to {vy+1, ..., v2n }. The output relation of QF as a flat repre-
sentation OUT,r =Ut(up:Vvj,Uz:Vg,u3:V;) contains n? tuples and
3n? atomic values, albeit with a lot of repetition. A more succinct
representation is: OUTyp={v1, ..., on } x{vg } x {vp+1, ..., v2n }, which
contains O(n) atomic values.

Over the last decade, the theory of factorized databases [20] has
laid the foundation for avoiding such repetition. Under this the-
ory, each flat tuple is represented by a Cartesian product of sin-
gleton relations, which are unary relations with one tuple. This
theory introduced further two factorized representation schemes:
i) f-representations, which are unions of Cartesian products of
sets that contain singleton values; ii) d-representations, which are
generalized f-representations by defining and reusing repeated

3764

01 V9 Un
| | |
X X X
I I I
up Uu, Uiy U,
I L, L,
00 1001 100 1
up{ur} x
|
N
us{uz} Un+1 - U2n
(a) Ty. (b) D-Rep. QzF per D-T;.

Figure 1: D-representations for Q;r over D-tree 7.
subexpressions. F- and d-representations are denoted by f- and
d-trees, respectively which describe the factorization structure of
a relation at the attribute level. Figure 1 shows an example of a
d-representation of OUT,p over d-tree 7.

The theory of factorized databases extends the theory of worst-
case optimal join query sizes and has established that for any query
Q the following holds: s'(Q) < s(Q) < AGM(Q). Here, s'(Q),
s(Q), and AGM(Q) are the worst-case size of the d-, f- and flat
representations of a query, respectively [20].

5.2 System Implementations

We will next discuss the existing approaches for factorization.
FDB [5]: was the first processor to introduce factorized query pro-
cessing. This approach directly processes F-representations stored
in tries i.e., operators take in and output F-representations. Each
plan is linear and operators rely on full materialization of intermedi-
ate relations. An FDB-style processor requires novel restructuring
operators such as Swap that manipulate f-representations.

LBQP [7]: is a pipelined query processor of GraphflowDB that
extends block-based processors of columnar RDBMSs. LBQP is de-
signed for in-memory GDBMSs and uses a restricted set of f-trees.
LBQP operators exist in traditional processors with the goal of easy
integration. We will give an overview of the design of LBQP and
discuss the pros and cons of this approach with that of FDB.

5.3 Open Challenges

Compared to WCOJ algorithms, fewer systems work has been done
in factorization and this field contains numerous open challenges.
Two important ones are: (i) No prior work has proposed a com-
plete pipelined query processor architecture; and (2) No prior work
has integrated d-representations, i.e., named expressions and their
reuse, in limited or general form into actual systems.

6 RECURSIVE JOINS

Queries in graph workloads can be augmented with fragments
containing recursive joins such as Shortest Path Queries (SPQs) and
Regular Path Queries (RPQs). Several systems natively support SPQs
however these approaches are not conducive to optimizations. We
will briefly mention these but instead focus on RPQs.

6.1 Foundations

An RPQ finds (v;, vj) pairs connected through path(s) that adhere
to a regular expression. RPQs can be defined semantically along

two axes: 1) counting the number of paths or just checking for
existence; and 2) simple i.e., have a restriction such that no vertex
in the path is visited twice, or arbitrary with no such restriction.
Different semantics land themselves best for different optimiza-
tions. Nevertheless, existing approaches can be split into two broad
categories: 1) —RA which is an extension of relational algebra by
adding the « operator to evaluate the transitive closure [2]; and 2)
Finite Automaton (FA) plans [23] which started with the seminal
work of Mendelzon and Wood [14].

o
L \
X
start -) ll / N\ l2
(a) FA Plan. (b) a plan.

Figure 2: The parse tree and associated plan in a—RA.

We will demonstrate the difference between the two approaches
with examples. Consider an RPQ that finds the pairs whose path
matches the expression (I1l2)+, where [; is an edge label. Figure 2
shows the FA and an a-RA plans for this query. The FA plan evalu-
ates the query one label at a time by matching the tuple values to
the states as described by the FA shown in Figure 2a. Instead, an
a-RA approach computes an intermediate result, which is given to
an “a operator” that runs self-joins until a fixed point is reached.

In the tutorial, we will overview both approaches and optimiza-
tions and show the differences between the plan spaces.

6.2 System Implementations

We will next discuss approaches to evaluate RPQs: (i) General a-RA
approach; (ii) WaveGuide which mixes both «—RA and FA plans [23].
a-RA: RPQs have generally been studied in the context of RDF
systems. The a—RA approach [2] with an « operator enables RDF
stores to evaluate the property paths in SPARQL. This approach is
easy to integrate in RDBMSs that support recursive SQL queries
as done in the prototype system on top of Apache Spark [6] for
recursive components of SQL [6].

WaveGuide [23] is a hybrid approach that combines FA plans and
the a—RA approach leading to a richer plan space for which a new
cost optimization approach is needed [23]. The system can compute
intermediate relations which are joined relations as indicated by
the regular expression. The intermediate relations can later be used
by an extended FA that treats them as a single label in the regular
expression. For example for (I;1;)+, WaveGuide can compute the
join between [; and Iy, store the result and then use that as a new
label over which an FA is defined. WaveGuide plans are also expres-
sive enough to represent any @-RA based plan. A WaveGuide plan
contains one or more wavefronts. These wavefronts are expanded
repeatedly until no new answers are found.

6.3 Open Challenges

We will discuss two open challenges for evaluating recursive queries:
(1) Waveguide-like plans can lead to a large plan space, which are
challenging for existing DBMS query optimizers to explore and
assign costs to; and (2) Existing approaches to evaluate recursive
queries use flat tuple representations. Proposing recursive query

3765

processors that also factorize the intermediate results generated by
their plans is a promising research venue.

7 AUTHOR INFORMATION

Amine Mhedhbi is a Ph.D. student at the University of Waterloo. His
research focuses on scaling query processing over graph-structured
relations. He received the VLDB Best Paper Award in 2018 and the
Microsoft Ph.D. Research Fellowship 2020-2022.

Semih Salihoglu is an Assistant Professor at the University of Wa-
terloo. His work focuses on algorithms and systems for managing,
processing, visualizing, and debugging large-scale graph-structured
data. He has co-designed and co-implemented several graph pro-
cessing systems, such as GraphflowDB [11] (along with Mhedhbi),
GRainDB [10], GraphSurge, and GPS. He received the VLDB Best
Paper Award in 2018 and Distinguished Reviewer or PC Member
Award in PVLDB 2018 and 2020 and SIGMOD 2018 and 2021. He
has received his PhD from Stanford University in 2015.

REFERENCES

[1] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher Ré. 2016.
EmptyHeaded: A Relational Engine for Graph Processing. In SIGMOD. 431-446.

[2] Rakesh Agrawal. 1987. Alpha: An Extension of Relational Algebra to Express a
Class of Recursive Queries. In ICDE. 580-590.

[3] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu,
Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. 2015. Design and
Implementation of the LogicBlox System. In SIGMOD. 1371-1382.

[4] Albert Atserias, Martin Grohe, and Déaniel Marx. 2017. Size bounds and query
plans for relational joins. In CoRR, Vol. abs/1711.03860.

[5] Nurzhan Bakibayev, Dan Olteanu, and Jakub Zavodny. 2012. FDB: A Query
Engine for Factorised Relational Databases. In PVLDB. 1232-1243.

[6] Sarah Chlyah, Pierre Genevés, and Nabil Layaida. 2021. Distributed Evaluation of
Graph Queries using Recursive Relational Algebra. In CoRR, Vol. abs/2111.12487.

[7] Pranjal Gupta, Amine Mhedhbi, and Semih Salihoglu. 2021. Columnar Storage
and List-based Processing for Graph Database Management Systems. In PVLDB.
2491-2504.

[8] Mohamed S. Hassan, Tatiana Kuznetsova, Hyun Chai Jeong, Walid G. Aref,
and Mohammad Sadoghi. 2018. GRFusion: Graphs as First-Class Citizens in
Main-Memory Relational Database Systems. In SIGMOD. 1789-1792.

[9] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2007. Database Cracking.
In CIDR. 68-78.

[10] Guodong Jin and Semih Salihoglu. 2022. Making RDBMSs Efficient on Graph
Workloads Through Predefined Joins. In PVLDB. 1011-1023.

[11] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedhbi, Jeremy Chen, and
Semih Salihoglu. 2017. Graphflow: An Active Graph Database. In SIGMOD.
1695-1698.

[12] Mahmoud Abo Khamis, Hung Q. Ngo, Christopher Ré, and Atri Rudra. 2016.
Joins via Geometric Resolutions: Worst Case and Beyond. In TODS.

[13] Chunbin Lin, Benjamin Mandel, Yannis Papakonstantinou, and Matthias Springer.

2016. Fast In-Memory SQL Analytics on Typed Graphs. In PVLDB. 265-276.

Alberto O. Mendelzon and Peter T. Wood. 1995. Finding Regular Simple Paths in

Graph Databases. In SIAM J. Comput. 1235-1258.

[15] Amine Mhedhbi, Chathura Kankanamge, and Semih Salihoglu. 2021. Optimizing

One-time and Continuous Subgraph Queries using Worst-case Optimal Joins. In

TODS. 6:1-6:45.

Amine Mhedhbi and Semih Salihoglu. 2019. Optimizing Subgraph Queries by

Combining Binary and Worst-Case Optimal Joins. In PVLDB. 1692-1704.

Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System

with In-Memory Performance. In CIDR.

[18] Thomas Neumann and Gerhard Weikum. 2010. The RDF-3X engine for scalable

management of RDF data. In VLDBJ. 91-113.

Hung Q. Ngo, Christopher Ré, and Atri Rudra. 2013. Skew strikes back: new

developments in the theory of join algorithms. In SIGMOD Rec. 5-16.

[20] Dan Olteanu and Jakub Zavodny. 2015. Size Bounds for Factorised Representa-

tions of Query Results. In TODS. 2:1-2:44.

Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer

Ozsu. 2020. The ubiquity of large graphs and surprising challenges of graph

processing: extended survey. In VLDBJ. 595-618.

Todd L. Veldhuizen. 2014. Triejoin: A Simple, Worst-Case Optimal Join Algorithm.

In ICDT. 96-106.

[23] Nikolay Yakovets, Parke Godfrey, and Jarek Gryz. 2016. Query Planning for
Evaluating SPARQL Property Paths. In SIGMOD. 1875-1889.

[14

[16

[17

[19

[21

~
5,

