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University Professor,
School of Computer Science
University of Waterloo

Ken Salem
Professor
School of Computer Science
University of Waterloo

Internal-External Member: Lukasz Golab
Professor, Canada Research Chair in Data for Good,
Department of Management Sciences
Faculty of Engineering
University of Waterloo

ii



Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of Con-
tributions included in the thesis. This is a true copy of the thesis, including any required final
revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii



Statement of Contributions

I am the primary contributor of the work I present in this thesis. Some portions of this
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results, how plans add, implement, and optimize caching and reuse, and how to handle partial
tuples that do no produce output, is different. The master’s thesis lacked an optimizer and only
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Abstract

Finding patterns over graph-structured datasets is ubiquitous and integral to a wide range of
analytical applications, e.g., recommendation and fraud detection. When expressed in the high-
level query languages of database management systems (DBMSs), these patterns correspond to
many-to-many join computations, which generate very large intermediate relations during query
processing and degrade the performance of existing systems.

This thesis argues that modern query processors need to adopt two novel techniques to be
efficient on growing many-to-many joins: (i) worst-case optimal join algorithms; and (ii) fac-
torized representations. Traditional query processors generate join plans that use binary joins,
which in iteration take two relations, base or intermediate, to join and produce a new relation.
The theory of worst-case optimal joins have shown that this style of join processing can be prov-
ably suboptimal and hence generate unnecessarily large intermediate results. This can be avoided
on cyclic join queries if the join is performed in a multi-way fashion a join-attribute-at-a-time.
As its first contribution, this thesis proposes the design and implementation of a query processor
and optimizer that can generate plans that mix worst-case optimal joins, i.e., attribute-at-a-time
joins and binary joins, i.e., table-at-a-time joins. In contrast to prior approaches with novel join
optimizers that require solving hard computational problems, such as computing low-width hy-
pertree decompositions of queries, our join optimizer is cost-based and uses a traditional dynamic
programming approach with a new cost metric.

On acyclic queries, or acyclic parts of queries, sometimes the generation of large inter-
mediate results cannot be avoided. Yet, the theory of factorization has shown that often such
intermediate results can be highly compressible if they contain multi-valued dependencies be-
tween join attributes. Factorization proposes two relation representation schemes, called f- and
d-representations, to represent the large intermediate results generated under many-to-many joins
in a compressed format. Existing proposals to adopt factorized representations require design-
ing processing on fully materialized general tries and novel operators that operate on entire tries,
which are not easy to adopt in existing systems. As a second contribution, we describe the imple-
mentation of a novel query processing approach we call factorized vector execution that adopts
f-representations. Factorized vector execution extends the traditional vectorized query processors
to use multiple blocks of vectors instead of a single block allowing us to factorize intermediate
results and delay or even avoid Cartesian products. Importantly, our design ensures that every
core operator in the system still performs computations on vectors. As a third contribution, we
further describe how to extend our factorized vector execution model with novel operators to
adopt d-representations, which extend f-representations with cached and reused sub-relations.
Our design here is based on using nested hash tables that can point to sub-relations instead of
copying them and on directed acyclic graph-based query plans.
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All of our techniques are implemented in the GraphflowDB system, which was developed
throughout the years to facilitate the research in this thesis. We demonstrate that GraphflowDB’s
query processor can outperform existing approaches and systems by orders of magnitude on
both micro-benchmarks and end-to-end benchmarks. The designs proposed in this thesis adopt
common-wisdom query processing techniques of pipelining, vector-based execution, and morsel-
driven parallelism to ensure easy adoption in existing systems. We believe the design can serve
as a blueprint for how to adopt these techniques in existing DBMSs to make them more efficient
on workloads with many-to-many joins.
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high standard for research and systems building. He introduced me to the world of data manage-
ment and with his charisma, effortlessly made me want to work with him. Proud to be one of the
disciples! Semih gave me ample guidance while ensuring I had the freedom to pursue many of
my ideas. He supported me in the pursuit of a research career and cheered me on throughout the
ups and downs of the Ph.D. program. He has seen it all. I will always vividly remember his ad-
vice and outlook on research from a deep focus on a single problem at a time, to the importance
of clarity in communication, asking simple yet deep questions, and his insistence on doing great
work. I am immensely grateful for the mentorship and friendship.
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Boncz and Gábor Szárnyas for hosting me at CWI. I truly enjoyed the experience of sharing my
work with your inspiring group. I want to extend many thanks to Phil Bernstein, Spyros Blanas,
Christian König, Yi Shan and Vivek Narasayya for being incredible mentors and collaborators
while at Microsoft Research and for introducing me to new research directions on transactional
processing and cloud resource management.

I would be remiss to not mention the impact that professors William E. Lynch, Glenn Cowan,
and Jelena Trajkovic had on me. They introduced me to research and inspired my sense of cu-
riosity and passion during my undergraduate studies. While I was still early on in my bachelor’s,
they took many of my idiotic ideas seriously and shown me interesting applied problems in signal
processing and optical network-on-chip design.

I would like to thank Siddhartha Sahu, Chathura Kankanamge, Pranjal Gupta, Shahid Khaliq,
Xiyang Feng, Annie Zhou, and Guodong Jin for their contributions to GraphflowDB as part of
project collaborations or within their own projects. With Siddhartha and Chathura, I will always
remember the excitement of building out the first version of the system. With Shahid and Pranjal,
we tackled the storage component which made the subsequent research possible, and with Xiyang
and Annie, we had a wonderful summer working on various aspects of factorization and query
processing together. I learned a lot from Guodong who was always cheerful and available for

vii



technical discussions and sharing many of his insights. Major thanks to Lori D. Paniak and Harsh
Kirit Roghelia from the computing facility who always provided excellent and timely IT support.

I am grateful for all the friendships I got to make and to the colleagues I met that made
graduate studies at Waterloo exceptional. You hold a special place in my heart. I hope our paths
continue to cross in the future.

I am deeply grateful to my parents who communicated the importance of education and
nurtured my passion in mathematics and science early on. You have always supported me and
my siblings in our endeavours. Your sacrifices gave us the chance to carry on and be able to focus
on what mattered to us. Big thank you to my siblings for their encouragement and for tolerating
my absence at times. My family’s support has been invaluable and definitely got me to where
I am today. Finally, I would like to thank my wife Abir for her unwavering support throughout
my last year of Ph.D. as we navigate our major life changes. She propelled me into finishing and
helped turn this document into an ex-thesis.

This is the last section I wrote within this thesis and as I did, I reflected on how hard it was
to truly express in words my gratitude and how hard it was to acknowledge everyone properly.
Sincerely, thank you for the impact you had on me as a person, as a researcher, and on my work.
I now shall shelve this thesis, marking the end of my formal education journey and the start of a
new one in academic research; a journey I am absolutely ecstatic to embark on.

viii



Dedication

To my parents for inspiring me and instilling in me tenacity and the pursuit of excellence.

ix



Table of Contents

List of Figures xiv

List of Tables xvii

1 Introduction 1

1.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 End-to-end Adoption of Worst-case Optimal Joins . . . . . . . . . . . . 4

1.2.2 Factorized Vector Execution . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Caching and Reuse of Intermediate Results . . . . . . . . . . . . . . . . 7

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Preliminaries and Background 10

2.1 Queries and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 GraphflowDB Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Adopting Worst-case Optimal Joins 14

3.1 Existing Approaches and Overview of Contributions . . . . . . . . . . . . . . . 15

3.1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Preliminaries: Generic Join Algorithm . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Optimizing WCOJ Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

x



3.3.1 WCOJ Plans and INLJ /IMJ Operators . . . . . . . . . . . . . . . . . . 20

3.3.2 Effects of Join Attribute Orderings . . . . . . . . . . . . . . . . . . . . . 22

3.3.3 Cost Metric for WCOJ Plans . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Full Plan Space & Dynamic Programming Optimizer . . . . . . . . . . . . . . . 26

3.4.1 Hybrid Plans and Hash Join (HJ) Operator . . . . . . . . . . . . . . . 26

3.4.2 Cost Metric for General Plans . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.3 Dynamic Programming Optimizer . . . . . . . . . . . . . . . . . . . . . 29

3.5 Cost & Cardinality Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.1 Catalogue Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.2 Cost Estimations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Adaptive WCOJ Plan Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.1 Adaptive Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.2 Adaptive Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7.2 Evaluation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7.3 Plan Suitability For Different Queries and Optimizer Evaluation . . . . . 38

3.7.4 Adaptive WCOJ Plan Evaluation . . . . . . . . . . . . . . . . . . . . . . 41

3.7.5 EmptyHeaded Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7.6 Cache Trie Join (CTJ) Comparisons . . . . . . . . . . . . . . . . . . . . 45

3.7.7 CFL Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7.8 Scalability Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7.9 Catalogue Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xi



4 Factorized Vector Execution 54

4.1 Existing Approaches and Overview of Contributions . . . . . . . . . . . . . . . 56

4.1.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Factorized Representations . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 GraphflowDB Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Mixing Factorization and Vectorized Execution . . . . . . . . . . . . . . . . . . 61

4.3.1 Intermediate Tuple Set Representation . . . . . . . . . . . . . . . . . . . 63

4.3.2 Execution Engines and Operators . . . . . . . . . . . . . . . . . . . . . 63

4.3.3 Benefits and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.2 Microbenchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.3 Baseline System Comparisons . . . . . . . . . . . . . . . . . . . . . . . 71

5 Caching and Reuse of Intermediate Results 77

5.1 Overview of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 D-representations: F-representations using Definitions . . . . . . . . . . 80

5.2.2 D-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.3 Worst-case Size Bounds for F- and D-representations . . . . . . . . . . . 83

5.3 Adopting D-representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.2 Query Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.3 Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 D-Representation Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xii



5.6 Baseline System Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.6.2 Impact on WCOJ Plan Space . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6.3 Microbenchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Related Work 104

6.1 WCOJ Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1.1 Algorithmic Work on WCOJ Algorithms . . . . . . . . . . . . . . . . . 105

6.1.2 Other Systems Implementations of WCOJ Algorithms . . . . . . . . . . 107

6.1.3 Cardinality Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 Factorized Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 Subgraph Matching Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4 Other Systems Approaches for Efficient Graph Query Processing in DBMSs . . . 114

7 Conclusion 117

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

References 121

xiii



List of Figures

1.1 Example of a ‘Twitter’ sub-graph. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Example Relation R(from, to) highlighting a single output tuple (1, 0, n+1,
3n+1, 2n+3) of query R(a, b), R(b, c), R(c, d), R(d, e). . . . . . . . . . . . . . . 6

2.1 Graph Notation for Diamond query. . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Example Queries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Example of two binary join trees, a WCOJ tree, and a hybrid join tree evaluating
the diamond-X query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Generic Join with JAO a1a2a3a4 for diamond query in Figure 2.1. . . . . . . . . 20

3.4 Queries used to demonstrate the effects of JAOs. . . . . . . . . . . . . . . . . . . 23

3.5 Example join tree not in EmptyHeaded’s GHD plan space for the 6-cycle query:
E(a1, a2), E(a2, a3), E(a3, a4), E(a4, a5), E(a5, a1). . . . . . . . . . . . . . . . 27

3.6 Two plans where P1 joins two subqueries that share a query edge and P2 joins
two subqueries that do not. Shows also operator pipelines of P1. . . . . . . . . . 28

3.7 Input graph for adaptive JAO example. . . . . . . . . . . . . . . . . . . . . . . . 34

3.8 Example adaptive WCOJ plan. Shows both the logical and operator pipelines. . . 35

3.9 Query Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.10 Run time (secs) of GraphflowDB plan spectrum for Q1−8. ‘x’ specifies the plan
GraphflowDB chooses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.11 Run time (secs) of GraphflowDB plan spectrum for Q11 − 13. ‘x’ specifies the
plan picked by GraphflowDB. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xiv



3.12 Run time (secs) of adaptive plans enumerated by GraphflowDB for queries Q2−
6 and Q10. ’x’ specifies the plan picked by GraphflowDB. . . . . . . . . . . . . 42

3.13 Plan with seamless mixing of intersections and binary joins on Q9. . . . . . . . . 46

3.14 Example of CTJ’s tree decompositions (TDs) for Q2. . . . . . . . . . . . . . . . 47

3.15 Scalability experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Example input graph G and flat representation of Q2H=R(a, b), R(a, c) on G. . . 55

4.2 F-representations for Q2H following F-trees T1 and T2. . . . . . . . . . . . . . . 59

4.3 Left-deep plan example for QFFP . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Example of intermediate chunk and its equivalent logical relation for QFFP . The
first two vector groups are flattened to single tuples, while the last represents k2
many tuples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Input dataset and output example of QFFP2. . . . . . . . . . . . . . . . . . . . . 66

4.6 Left-deep plan example for QFFP2. . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 Example of Intermediate Chunk for Q2P C . . . . . . . . . . . . . . . . . . . . . . 67

4.8 F-trees supported by factorized vector execution. . . . . . . . . . . . . . . . . . 68

4.9 Relative speedup/slowdown of the different systems in comparison to GF-V on
LDBC10. The boxplots show the 5th, 25th, 50th, 75th, and 95th percentiles. . . . 73

5.1 Example relation R and output results for R(a1, a2), R(a2, a3), R(a3, a4), R(a4, a5)
as an f-representation F1 and as a d-representation Fd1 following T1. . . . . . . . 78

5.2 Output results for R(a1, a2), R(a2, a3), R(a3, a4), R(a4, a5), where R is the re-
lation in Figure 5.1a, as an f-representation F2 and as a d-representation Fd2
following T2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Examples of three d-trees. D1 andD2 for the four-hop query a1→a2→a3→a4→a5
and D1 for the triangle query a1→a2→a3,a1→a2. . . . . . . . . . . . . . . . . . 82

5.4 Example of a WCOJ pipeline P and a Dataflow DF that adds reuse to P fol-
lowing D3H in Figure 5.4a, where Ma3(a4) = R(a3=va3 , a4, ts2), P (ts2) and
Ma2(a4) = R(a2=va2 , a3,−), R(a3, a4, ts2), P (ts2). . . . . . . . . . . . . . . . 86

5.5 A query Qc and two valid d-trees Dc1 and Dc2 . . . . . . . . . . . . . . . . . . . 88

xv



5.6 Example of a WCOJ pipeline Pc1 and a Dataflow DFc1 that adds reuse to Pc1 fol-
lowingDc1 in Figure 5.5b, whereMa2(a3) = R(a2=va2 , a3) andMa1(a2, a3, a6, a4, a5) =
R(a1=va1 , a2), R(a2, a3), R(a1, a4),R(a4, a5),R(a5, a1). . . . . . . . . . . . . . 89

5.7 Example of a plan P as two pipelines and three extracted subpipelines Ps to
which we add caching and reuse. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.8 Example of internals of d-representation following Dc1 in Figure 5.5b. . . . . . . 93

5.9 Plan spectrum for QCc02 showing the run time of WCOJ plans (W) and dataflows
with subquery caching and reuse (Wc). This is shown on different SF and selec-
tivity (S) configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.10 A WCOJ plan P and a dataflow Pf which adds d-representation usage to P
evaluating Q4H(a1, a4) = E(a0, a1),E(a1, a2), E(a2, a3), E(a3, a4). . . . . . . . 101

5.11 Speedup over factorized vector execution when we reuse expressions as as we
prune a percentage of edges from three datasets: 1) Amazon(Am); 2) Epin-
ions(Ep); and 3) Google(Go). Query evaluated is: R(a0, a1), R(a1, a2), R(a2, a3),
R(a3, a4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xvi



List of Tables

1.1 Example of ‘user’ relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Example of ‘tweet’ relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Example of ‘follow’ relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Example of ‘like’ relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 Comparison against DBMSs using worst-case optimal joins. Q and D refer to
the input query and dataset, respectively. . . . . . . . . . . . . . . . . . . . . . . 18

3.2 WCOJ plan run times in seconds with and without intersection cache for diamond-
X on the Amazon (|V |=403K,E=3.38M ) dataset from Stanford’s network anal-
ysis project [112]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Run time (secs), size of intermediate results (Si), and i-cost of different JAOs for
the asymmetric triangle query. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Run time (secs), size of intermediate results (Si), and i-cost of different JAOs for
the tailed triangle query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Run time (secs), size of intermediate results (Si), and i-cost of some JAOs for the
symmetric diamond-X query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 A subquery catalogue. A is a set of adjacency list descriptors; µ is selectivity. . . 31

3.7 Datasets used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.8 Output size for queries in Figure 3.9 on the Amazon, Google, and Epinions datasets. 38

3.9 Run time (secs) of GraphflowDB (GF) and EmptyHeaded with good JAOs (EHg)
and bad JAOs (EHb). TL indicates a timeout after 48 hrs. Mm indicates running
out of memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.10 Run time (secs) of GraphflowDB (GF) and CTJ. TL indicates the query did not
finish in 48 hrs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xvii



3.11 Average run time (secs) of GraphflowDB (GF) and CFL on large queries. Qi(s/d)
is a query set of 100 randomly generated queries where i is the number of query
vertices in the graph pattern and s and d specify sparse and dense queries, re-
spectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.12 Q-error and catalogue creation time (CT) in secs for GraphflowDB for different
z values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.13 Postgres and GraphflowDB Q-error and number of catalogue entries (|R|) for GF
for different h values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Datasets used for factorized vector execution evaluation. . . . . . . . . . . . . . 69

4.2 Run time in ms of GF-V and GF-F plans. . . . . . . . . . . . . . . . . . . . . . 71

4.3 Run time in ms for running the LDBC Queries on 5 systems: (i) GF-F; (ii)
GF-V; (iii) VER for VERTICA; (iv) MON for MONET; and (v) NEO for NEO4J. . . 75

4.4 Run time in ms for running the JOB Benchmark on 5 systems: (i) GF-F; (ii)
GF-V; (iii) VER for VERTICA; (iv) MON for MONET; and (v) NEO for NEO4J. . . 76

5.1 Datasets used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Run time (msec) for IC LDBC Queries (SFs 10 and 30) for GF-F and GF-D. . . 97

5.3 Run time (msec) for IC LDBC Queries (SF 100) for GF-F and GF-D. . . . . . . 98

5.4 Run time (msec) for IC LDBC Queries (SF 100) for GF-F and GF-D. . . . . . . 98

5.5 Number of WCOJ plans on ICc01 per speedup when using subquery caching and
reuse buckets based on order of magnitude on: (a) SF10, selectivity 0.1% and
1% and SF30, selectivity 0.1%; and (b) SF30, selectivity 1%. . . . . . . . . . . . 100

5.6 Run time (secs) comparing GF-F and GF-D when evaluating Q4H(a1, a4) =
E(a0, a1),E(a1, a2), E(a2, a3), E(a3, a4) on: 1) Epinions (Ep); 2) Amazon (Am);
and 3) Google (Go). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.7 Evaluating Q4H(a1, a4) =E(a0, a1),E(a1, a2), E(a2, a3), E(a3, a4), with a WCOJ
with JAO (a1, ), we report the total number of joins (#TJ) with no caching at each
depth. We also report the % and number of saved joins (#SJ) by caches in prior
depths. Finally, we report the number of cache misses (#M) & hits (#H) at each
depth. Evaluation on: 1) Epinions (Ep); 2) Amazon (Am); and 3) Google (Go). . 102

xviii



Chapter 1

Introduction

Querying graph-structured data, or graph data for short, is integral to a wide range of analytical
applications such as recommendation and fraud detection. Graph data typically refers to highly
connected datasets, i.e., ones with a prevalence of many-to-many (n-m) relationships. Examples
of such datasets appear in social networks such as the who-follows-whom Twitter graph [7] in
which a user follows many users, and payment services like AliPay [1] where an account can
transfer money to many others. Often, querying these datasets entails finding instances of a
graph pattern in a much larger input dataset. For example, diamond patterns in the who-follows-
whom Twitter graph can be used for recommendations [73, 74]. Complex cyclic patterns in the
transaction network of AliPay can be used to detect potential fraud [150]. In this thesis, we refer
to the combination of highly connected datasets and pattern-finding queries as graph workloads.

Pattern-finding queries can be represented as conjunctive queries over edge/relationship ta-
bles in a graph, where the relationship table contains at least two attributes representing the
source and destination IDs of the edges though it can contain other attributes. Throughout this
thesis, we will use a Datalog notation to represent these queries. Figure 1.1 shows an example of
a subgraph from Twitter data. Tables 1.1 to 1.4 show the subgraph in its relational representation,
with entity relations user’ and tweet’ and relationship relations follow’ and like’. The diamond-
pattern query used by Gupta et al. [74] to make recommendations on the who-follows-whom
Twitter graph can be represented as follows:

Q(a, d) = follow(a, b), follow(b, d), follow(a, c), follow(c, d)
where d could be a good recommendation for a.

Existing database management systems (DBMSs) tend to not perform well on the conjunctive
queries above when the underlying relations model highly connected datasets, i.e., when the
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olinguyen queryproc semihsalihoglu

438514

1001
tweet

like

follow follow

tweettweet

like

Figure 1.1: Example of a ‘Twitter’ sub-graph.

username registration date

queryproc Oct. 2013

olinguyen Jul. 2009

semihsalihoglu Apr. 2009

... ...

Table 1.1: Example of ‘user’ relation.

id tweet text author

438 ‘writing a thesis ...’ queryproc

514 ‘hoping to join a ...’ queryproc

1001 ‘Japan is awesome!’ olinguyen

... ... ...

Table 1.2: Example of ‘tweet’ relation.

follower followee

queryproc olinguyen

queryproc semihsalihoglu

... ...

Table 1.3: Example of ‘follow’ relation.

username tweet id

queryproc 1001

olinguyen 514

... ...

Table 1.4: Example of ‘like’ relation.

queries contain n-m joins. The evaluation of such queries in existing DBMSs uses binary join
algorithms, which iteratively take two relations and joins them until all relations are joined. This
process results in intermediate relations that explode in size and can contain a lot of repetition that
leads to redundant computation. As a result, existing query processors face serious performance
and scalability challenges, resulting in slow run times and in many cases timeouts. Industry users
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in a recent survey [159, 161] have also identified scalability as the most pressing challenge for
existing DBMSs evaluating graph workloads.

This challenge serves as the core motivation for the research conducted in this thesis. Specifi-
cally, this thesis aims to address the problem of efficiently evaluating n-m join-heavy queries that
are prevalent in graph workloads by integrating novel query processing techniques into DBMSs.

1.1 Thesis Statement

The central thesis argument is that in order to mitigate the explosion in intermediate results under
m-n join-heavy queries, existing DBMSs must adopt two novel techniques:

1. Worst-case optimal joins: Recent theoretical results [24, 137] showed that binary joins,
can be suboptimal when finding cyclic patterns. Binary joins have asymptotically worse
run-times than the worst-case, i.e., maximum, output sizes of these queries. A set of new
worst-case optimal joins (WCOJs) have been developed to address the suboptimality of
binary joins and thus avoid producing unnecessary results that are guaranteed to not be
part of the final output.

2. Factorized representations: Factorized representations [145] are a succinct and lossless
representation for relations and can be used to compress intermediate and output query re-
sults. In factorized representations, relations are represented as unions of Cartesian prod-
ucts which factors out common values across sets of tuples. This technique is particularly
effective for representing intermediate relations that are constructed when evaluating large
acyclic n-m join queries.

Since graph workloads that motivate this thesis consist of read-only pattern queries, we take
as a foundation the architecture of existing read-optimized query processors that adopt several
common wisdom principles including pipelined and vector-based query execution [34, 167], or
vector execution for short, morsel-driven parallelism [106], and dynamic-programming-based
join optimizers [37]. However, directly adopting WCOJs and factorization as done in early im-
plementations prior to this thesis work heavily deviate from this traditional architecture [22, 26,
137, 145]. For example, these papers and implementations assume a non-pipelined execution
where operators consume entire relations and output entire relations. They also ignore impor-
tant details such as the query optimizer, its cost model, the cardinality estimator, and in some
work descriptions of physical operators. An efficient and practical adoption of these techniques
requires rethinking these core DBMS components. These are the technical challenges that are
addressed in this thesis.
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1.2 Thesis Contributions

We propose three different query processing techniques for analytical DBMSs. All of these
techniques are integrated in GraphflowDB [3, 92], which is an in-memory analytical DBMS that
was built from scratch to facilitate the research of this thesis. The code developed as part of
this thesis is publicly available on Github [70, 71, 72]. Next, we give an overview of the three
techniques. For each, we give a broad overview, including considerations and challenges we
tackle, and the specific contributions made within query execution and optimization, which we
cover in detail in later chapters.

1.2.1 End-to-end Adoption of Worst-case Optimal Joins

Overview:
The size of the intermediate results of binary joins on cyclic queries can be asymptotically larger
than the maximum possible final output size of the query. This maximum output size is known
as the AGM bound of a query [24]. Given the sizes of a set of relations |R1|, ..., |Rn| and
a conjunctive query Q on these relations, the AGM bound is the maximum output size of Q
under all possible database instances with these relation sizes. For example, the AGM bound of
the triangle query R(a, b), R(b, c), R(c, a), where |R| = N , is N

3
2 . Binary join plans would first

evaluate the open wedge R(x, y), R(y, z) before closing the cycle. On certain database instances,
binary join plans would generate N2 intermediate results, which is larger than the AGM bound
of the triangle query.

Worst-case optimal joins (WCOJs) correct for the suboptimality of binary joins and do so
by introducing a novel evaluation approach. Specifically, binary joins rely on a table-at-a-time
evaluation approach, while WCOJs introduce an attribute-at-a-time evaluation approach. Table-
at-a-time evaluation executes a sequence of binary joins between base and intermediate relations
to evaluate the conjunctive query Q. Each binary join output effectively matches a larger subset
of the relations of Q in the input dataset until Q is fully matched. An attribute-at-a-time evalu-
ation chooses an ordering on join attributes in Q, and uses an n-way join operator to match join
attributes in order. In our work, we rely on an n-way join operator that performs multiway inter-
sections. In graph terms, this computation intersects one or more neighbourhoods of vertices to
extend partial matches to one more join attribute.

Contributions:
The new attribute-at-a-time evaluation approach that the theory of WCOJs introduces, is asymp-
totically optimal irrespective of the join attribute ordering (JAO) chosen. The theory however
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does not give advice on:

1. How should a system choose a JAO? In practice, different JAOs lead to very different
performances.

2. When should binary join algorithms be used solely or in conjunction with WCOJ algo-
rithms? Decades of research and engineering has shown that binary joins can be efficient
on many queries. Further, we will demonstrate in this thesis that on many queries, using
plans that mix binary and WCOJ algorithms is superior to binary join-only or WCOJ-only
plans. This also indicates that we need an optimizer capable of discriminating between
these plans as both evaluation approaches differ significantly. Therefore a related research
question is: How should a system optimize and generate such plans?

In Chapter 3 of this thesis, we broadly tackle these challenges and present an end-to-end adoption
of WCOJs in GraphflowDB. Our approach is based on a dynamic programming-based optimizer
with a new cost model, called i-cost, for intersection cost, that can generate plans with good JAOs
and generate plans that seamlessly mix binary join operators with a new n-way join operator that
we introduced. We show that the plan space of our optimizer subsumes tree decomposition-
based query optimizers that was introduced in prior work to integrate WCOJ algorithms in
DBMSs [11]. We further show how to choose JAOs adaptively in some plans. Finally, we
present extensive “plan space” experiments that plot the performance of each plan of a large
suite of queries. These experiments aim to answer the question of “Which type of plans among
WCOJ, binary join, or hybrid, are best for which queries?” based on how-cyclic the queries are.

1.2.2 Factorized Vector Execution

Overview:

The sizes of intermediate results using WCOJs on many queries can still be very large. Fur-
thermore, they may contain a lot of redundancy i.e., repetition that leads to a lot of redundant
computation. For example, consider the following four-hop query:
Q(a, b, c, d, e) = R(a, b), R(b, c), R(c, d), R(d, e), R is the binary relation shown in Figure 1.2
The output query size is n4 (same as the AGM bound) and is as follows:

OUTQ = { (1, 0, n+1, 3n+1, 2n+1) , ... , (1, 0, n+1, 3n+1, 3n) , ... ,
(n, 0, n+1, 3n+1, 2n+1) , ... , (n,0, n+1, 3n+1, 3n) , ... ,
(n, 0, 2n, 3n+1, 2n+1) , ... , (n,0, 2n, 3n+1, 3n) }

Factorized representations are lossless compressed representations of relations that use alge-
braic factorization over flat tuples i.e., factoring out common terms, to reduce the overall size of
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Figure 1.2: Example Relation R(from, to) highlighting a single output tuple
(1, 0, n+1, 3n+1, 2n+3) of query R(a, b), R(b, c), R(c, d), R(d, e).

the query results. For example, a more succinct representation of Q(a, b, c, d, e) can be:
OUTQ = { {(a : i) | i ∈ [1, n] }×(b : 0)×(c :n+1)×(d : 3n+1)×{(e :j) | j ∈ [2n+1, 3n] },

{(a : i) | i ∈ [1, n] }×(b : 0)×(c :n+1)×(d : 3n+1)×{(e :j) | j ∈ [2n+1, 3n] },
. . .

{(a : i) | i ∈ [1, n] }×(b : 0)×(c :n+1)×(d : 3n+1)×{(e :j) | j ∈ [2n+1, 3n] } }
This representation has (2n+3)×n = 2n2+3n fields in total. This is less than the AGM bound
of 4n2 fields. The factorization scheme is possible because attributes a and e are independent
conditioned on the (b, c, d) values i.e., given a fixed (b, c, d) values, the a values do not change
the e values and vice versa.

The representation above is called an f-representation in the theory of factorization. The
theory and our example above shows that such representations can even be strictly smaller than
the AGM bound of queries. More importantly, when queries contain m-n joins, a system can find
good factorized representations of query results during compilation time, simply by inspecting
the dependencies between the attributes in the query [145].

Factorized representations however tend to have a very different physical representation from
that of flat tuples used in existing DBMSs. They are suitable for being represented as tries, as
done in some prototype implementations and envisioned in the original papers on the foundations
of factorized representations [26, 145]. Processing over trie-based intermediate results however
deviates significantly from existing query execution architecture, for which processing on top
of flat tuples is essential. These implementations also are not pipelined and they materialize
entire intermediate outputs between operators. This makes it harder for existing DBMSs to adopt
factorization and to abandon the core principles of vector execution.
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Contributions:

The main research question we ask in Chapter 4 of this thesis is: How can existing pipelined
and vector-based query processors benefit from f-representations? Our query processor design,
which we call factorized vector execution, is based on using f-representations. Although process-
ing arbitrary factorized representations seems to indeed require adopting tries as intermediate
relations, our design finds a sweet spot by generating a restricted set of factorization schemes,
i.e., structure of Cartesian products, without abandoning vector execution. Yet, as we show this
design provides significant benefits over many common queries in graph workloads. Importantly,
factorized vector execution requires minimal changes to the physical operators of query execu-
tors and is easy to integrate in modern query processors. The combination of factorized vectors
and worst-case optimal joins gives upwards of three orders of magnitude speedups over tradi-
tional analytical DBMSs. Factorized vector execution introduces an order of magnitude speedup
over only worst-case optimal joins.

1.2.3 Caching and Reuse of Intermediate Results

Overview:
The f-representations used for intermediate relations in our factorized vector execution approach
can still contain redundancy on many queries. Consider for example the f-representation intro-
duced above for the four-hop query:

OUTQ = { {(a : i) | i ∈ [1, n] }×(b : 0)×(c :n+1)×(d : 3n+1)×{(e :j) | j ∈ [2n+1, 3n] },
. . .

{(a : i) | i ∈ [1, n] }×(b : 0)×(c :n+1)×(d : 2n)×{(e :j) | j ∈ [2n+1, 3n] } }
For each (b, c, d) prefix, the same set of a values {i | i ∈ [1, n]} and e values {i | i ∈ [1, n]}
are repeated. The theory of factorization introduces even more succinct representation schemes
by using definitions. A definition is a representation of the subquery results that are cached and
reused e.g., D1 ← {(a : i) | i ∈ [1, n]} and D2 ← {(e : j) | j ∈ [2n + 1, 3n]}. The definitions
D1 and D2 can be reused in the representation above as follows:

OUTQ = { { D1×(b : 0)×(c :n+1)×(d : 3n+1)×D2 },
. . .

{ D1×(b : 0)×(c :n+1)×(d : 2n)×D2 } }

F-representations with definitions are called d-representations in the theory of factorization.
The theory shows that d-representations can be strictly smaller than the size of f-representations,
which can also be strictly smaller than the AGM bound. Further, similar to f-representations, it
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is possible to identify viable definitions based on the query attribute dependencies at query com-
pilation time. Prior to our work and at the time of writing this thesis, no d-representation-based
query processor implementation has been proposed in the literature. The envisioned implemen-
tation in the original papers on the foundations of factorized representations is based on tries.
However, as we previously argued, it is challenging to adopt tries in pipelined and vector-based
query processors, which require processing on flat-tuples.

Contributions:
The main research question we ask in Chapter 5 is: How can existing pipelined and vector-based
query processors benefit from d-representations? Our approach generates plans that comprise of
multiple pipelines of operators that are executed consecutively. Within each pipeline we identify
a sub-pipeline i.e., a subset of contiguous operators, whose results are dependent on a single
input attribute value. The results of these sub-pipeline are materialized per unique attribute value.
The sub-pipeline executes if the input attribute value has not been encountered and is skipped
otherwise. When skipped, the result has been previously materialized and can be reused. To
make this possible, we introduce novel physical operators and dataflows constructed as directed
acyclic graph (DAG) of operators. These dataflows rely on the foundation of our factorized vector
executor. Specifically, these dataflows process data on top of the vectors used by the factorized
vector executor while caching intermediate results as d-representations.

Our approach requires the introduction of some novel operators and use techniques inspired
by traditional BFS and DFS graph traversals e.g., frontiers. The enumeration of these plans is
not straightforward and as such, we generate them in two steps: 1) use a cost-based optimizer to
choose a factorized vector execution plan, i.e., a plan that will generate f-representations; then 2)
use a rule-based optimizer to turn the plan into a DAG dataflow capable of caching and reusing
intermediate results. We cache the results into nested hash tables, which we then also use for a
hash join operator. We further implement necessary iterators over these hash tables. Finally, we
study when is results caching and reuse most effective. On traditional benchmark, caching and
reuse leads to benefits of up to 60x over factorized vector execution.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 gives an overview of the queries we
optimize for. The chapter also provides an overview of GraphflowDB, an in-memory DBMS de-
veloped to facilitate this research. We give overall context in which we make our contributions.
Chapters 3, 4, and 5 present the query processing techniques we propose. They respectively
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cover: (i) end-to-end adoption of a worst-case optimal join algorithm; (ii) factorized vector ex-
ecution; and (iii) caching and reuse of intermediate results. We give the necessary background
on worst-case optimal joins and factorized representations as needed in each of the chapters. Re-
lated work is presented in Chapter 6. We present the conclusion of this thesis and directions for
future research in Chapter 7.

9



Chapter 2

Preliminaries and Background

In this chapter, we introduce the queries we consider in this thesis, our query notation, and
GraphflowDB [3, 92], the DBMS in which we integrate our query processing techniques. For
the queries, we also introduce a simplified query graph notation that we use in later chapters.

2.1 Queries and Notation

Each conjunctive query can be seen as having two parts: 1) graph pattern finding; and 2) at-
tribute filtering. The graph pattern finding is equivalent to multi-way equi-joins between rela-
tions e.g., the diamond query follow(a, b), follow(b, d), follow(a, c), follow(c, d) is a 4-way
equi-join between four “copies” of the follow relation. Attribute filtering extends pattern find-
ing queries by adding predicates e.g., a=olinguyen which on the diamond query translates to
diamonds starting from user olinguyen, or b.registration date ≤ c.registration date which
eliminates symmetry in the output instances. Adding these two predicates to the diamond query
leads to the following query:

Q(d) :− follow(a, b), follow(b, d), follow(a, c), follow(c, d), a=olinguyen,

b.registration date ≤ c.registration date

Graph pattern finding within a conjunctive query can be rewritten using a graph notation.
We assume that relationships are directed from left-to-right e.g., each edge record (vi,vi) ∈
follow(a, b) implies vi follows vj i.e., vi→vj . As such, the diamond query can be presented
graphically as shown in Figure 2.1. Entity and relationship relations are depicted as query ver-
tices and query edges in this graph notation. In text, the query is Q(VQ, EQ) where VQ and EQ
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are the query vertices and edges, respectively. From the diamond example, a1, a2 ∈ VQ and
ai → aj ∈ EQ. In later chapters, we will use this notation at times, both in text and figures, to
describe join algorithms as well as our query plans.

a1

a2

a3

a4

e1 : follows

e2 : follows

e3 : follows

e4 : follows

Figure 2.1: Graph Notation for Diamond query.

2.2 GraphflowDB Overview

GraphflowDB [3, 92] is an in-memory DBMS that adopts the property graph data model [21]. In
the property graph data model, application data is modelled by: (i) nodes, representing entities;
(ii) edges, representing relationships; and (iii) arbitrary key-value properties on nodes and edges.
The data stored in GraphflowDB is queried with Cypher [146], a declarative language where
users describe graph patterns similar to the graph notation above to search for in their graphs.
Cypher further allows the use of traditional relational operations e.g., filtering, projections, or-
derings, and aggregations for further processing.

Cypher is a SQL-like language and its semantics can be understood in relational algebra
that is extended with recursion. Overall the data model and query language of GraphflowDB is
general enough to support a very wide range of database applications and offer an alternative to
the relational data model and SQL. This has been observed in a recent survey that found a very
wide range of applications built on top of GDBMSs [160]. These applications process data, often
associated with GDBMSs, such as social and protein networks, as well as data often associated
with RDBMSs, such as orders, products, and transactions.

GraphflowDB is optimized for graph pattern finding i.e., performing joins between node
records along predefined edge records. As such, GraphflowDB relies on pointer-based joins i.e.,
uses system-level dense integer IDs of nodes, which serve as pointers to look up neighbours.
This contrasts with and can be more efficient than value-based joins on arbitrary attributes in
RDBMSs. To implement pointer-based joins, GraphflowDB relies on three components:

• System-level dense integer node IDs: node records are given consecutive IDs i.e., surrogate
keys, starting from 0 to |V | for an input data graph G(V,E).
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• Adjacency list indexes: the edge records are indexed using the system-level node IDs
providing constant-time access to all in-coming/outgoing “neighbours” of a node.

• Index Nested Loop Join (INLJ): This operator uses adjacency list indexes to “ex-
tend” a node record to its “neighbours”, which is equivalent to joining a node record with
other node records using the edges in the graph. Such join operators are common in other
GDBMSs e.g., Expand operator in Neo4j. A variant of this operator, called Index
Multiway Join operator will be introduced in Chapter 3 when we describe our im-
plementation of WCOJ algorithms.

In addition to the INLJ operator, GraphflowDB also supports a Scan and Hash Join (HJ)
operators:

• Scan: The operator scans the forward or backward adjacency lists for the specific edge
relation and outputs each matched edge u→v as a (u,v) tuple.

• Hash Join : This operator is used to generate bushy/hybrid plans that use binary join and
WCOJ-style joins. We use the classic hash join operator which split into multiple operator
pipelines and HJ is implemented as separate Build and Probe Hash Table operators.
This first creates a hash table of all of the tuples of Qc1 on the common query vertices
between Qc1 and Qc2. The table is then probed for each tuple of Qc2.

Parallel Query Execution: GraphflowDB implements a work-stealing-based, morsel-driven [106]
parallelization technique. Let w be the number of threads in the system. We give a copy of a
physical plan P to each worker and workers steal work from a single queue to start scanning
ranges of edges in the SCAN operators. Threads can perform extensions in the INLJ /IMJ op-
erators without any coordination. Hash tables used in Hash Join are partitioned into d>>w
many hash table ranges. When constructing a hash table, workers grab locks to access each
partition but setting d>>w decreases the possibility of contention. Probing does not require
coordination and is done independently.

GraphflowDB evolved and improved throughout several years during which the research of
this thesis was conducted. As a result, the design of the system’s storage of node and edge
properties and adjacency lists was different throughout the development of the different query
processing techniques. For example, initially we used an in-memory row storage (Chapter 3)
and later moved to an in-memory columnar one (Chapters 4 and 5) [75]. Overall, these modifi-
cations will not be important for understanding our query processing techniques. When relevant
for the techniques we introduce in this thesis, we will explicitly give more details of the storage.
Similarly, the query processor and optimizer of the system have also changed throughout the
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thesis but since each chapter is about query processing and optimization, these changes form the
technical content of each chapter. However, the above core operators have remained similar to
their above descriptions. The primary differences have been in the representation of the inter-
mediate relations that these operators take as input and output. When necessary, we will provide
some details on these in different parts of this thesis.

13



Chapter 3

Adopting Worst-case Optimal Joins

This chapter focuses on how to mitigate the large intermediate relations that are generated when
evaluating cyclic join queries over many-to-many relationships. For cyclic queries, the recent
theory of worst-case optimal join (WCOJ) algorithms [137] has observed that traditional binary
join plans of existing systems generate provably large intermediate results. As we mentioned in
the Chapter 1, the way this argument is made is to compare the size of the intermediate results
generated by binary join plans to the maximum number of possible results there can be for a
query, which is known as the AGM bound of the query [24]. For example, consider the triangle
query R(a1, a2), R(a2, a3), R(a3, a1) shown in Figure 3.1a. The AGM bound of this query on
a relation R with N tuples (or a graph with N edges) is N

3
2 . Yet, one can show that there are

input relations R (or graphs) on which any binary join plan, which iteratively perform the join
two-relations at a time, will produce Ω(N2) many intermediate problems.

The core of the problem is that any binary join plan will perform 2 joins in this query: (i)
the first join will join two of the relations, say R(a, b) and R(b, c), which in graph terms finds
open triangles in the input graph; and (ii) join the result of step (i) with the third relation, in this
case R(c, a), which closes the triangles. Note that the second join is effectively a filter, so can
only decrease the number of intermediate results generated in the first join. Because the first
step computes open triangles and there can be much more open triangles (Ω(N2)) than closed
triangles (O(N

3
2 )), this computation can be quite inefficient. The theory of WCOJ algorithms

addresses this problem by using multiway-join algorithms that perform the join one attribute
at a time. As we will review in Section 3.2, the core algorithmic operation of certain WCOJ
algorithms is to perform intersections of sets of values. In graph terms, these correspond to
intersecting adjacency lists.
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Figure 3.1: Example Queries.

This theory, however, has two shortcomings. First, when using WCOJ algorithms, one needs
to pick an attribute ordering and the theory gives no advice as to how to pick a good attribute
ordering for WCOJ plans. Specifically, the theory shows that irrespective of the attribute ordering
picked, WCOJ algorithms are guaranteed to never generate more intermediate results than the
AGM bound of any query. The problem of picking an attribute ordering is very important in
practice and similar to how binary join plans can be optimized by picking an order of the relations
to join. Second, the theory ignores plans with binary joins, which have been shown to be efficient
on many queries by decades-long research in databases. That is, the theory does not give an
advice on when to use binary join plans. These two shortcomings motivate the work presented
in this chapter. Specifically, in addition to describing a complete end-to-end implementation of
WCOJ algorithms in a pipelined query processor, we study how to optimize multiway joins, i.e.,
, pick good attribute orderings when using WCOJ algorithms, and generate efficient plans that
use both worst-case optimal multiway joins and binary joins.

Throughout the chapter we will distinguish between three types of plans: a) binary join plans,
both left-deep and bushy; b) WCOJ plans using multi-way joins; and c) hybrid plans containing
both evaluation approaches, which are bushy plans with WCOJ subplans. Figures 3.2a, 3.2b, 3.2c,
and 3.2d show an example of each plan evaluating the diamond-X query, QDX :

QDX = R(a1, a2), R(a1, a3), R(a2, a3), R(a2, a4), R(a3, a4)

where R(from, to) is an Edge relation. Figure 3.1b shows the query pictorially. The plans in
Figures 3.2a-3.2d are logical plans. We cover the details of the physical implementation of these
plans in Section 3.2.

3.1 Existing Approaches and Overview of Contributions

To position our approach to end-to-end adoption of WCOJ algorithms and our contributions in the
context of prior work, we first briefly review the related work and then describe our contributions.
More detailed coverage of related work is in the related work chapter of this thesis (Chapter 6).
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(a) Left-deep binary join tree.
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(b) Bushy binary join tree.
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▷◁

R(a2,a3) R(a1,a2) R(a1,a3)

R(a2,a4) R(a3,a4)

(c) WCOJ tree.

▷◁

▷◁

R(a2,a3) R(a1,a2) R(a1,a3)

▷◁

R(a2,a3) R(a1,a2) R(a1,a3)

(d) Hybrid tree.

Figure 3.2: Example of two binary join trees, a WCOJ tree, and a hybrid join tree
evaluating the diamond-X query.

Perhaps the most common approach adopted by GDBMSs (e.g., Neo4j), RDBMSs (e.g., SAP
HANA), and RDF systems (e.g., RDF-3X [133]), is to evaluate conjunctive queries with binary
join plans. As observed in prior work [135], binary join plans are inefficient on highly-cyclic
queries like cliques.

Several prior solutions, such as BiGJoin [20], and the LogicBlox system [22] have studied
evaluating queries relying solely on WCOJs. We demonstrate empirically in our evaluation (Sec-
tion 3.7) that only using WCOJs is inefficient on large cyclic queries. In addition, these solutions
use simple heuristics to select join attribute orderings or do so arbitrarily.

CTJ is another system only using a WCOJ algorithm [91]. An important advantage of WCOJ
algorithms is their small memory footprint. For example, when executed in a purely pipelined
fashion, such algorithms do not require memory to keep large intermediate results. CTJ authors
observe that by keeping a cache of certain intermediate results and reusing these results, the
performance of WCOJ algorithms can be improved.
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The EmptyHeaded system [11], which is the closest to our work, is the only system we are
aware of that mixes worst-case optimal joins with binary joins. EmptyHeaded plans are based
on generalized hypertree decompositions (GHDs) of the input query Q. A GHD is effectively
a join tree T of Q, where each node of T contains a subquery of Q. EmptyHeaded evaluates
each subquery using a WCOJ plan, i.e., using only multi-way join intersections, and then uses
a sequence of binary joins to join the results of these subqueries. As a cost metric, Empty-
Headed uses the generalized hypertree widths of GHDs and chooses a minimum-width GHD.
This approach has three shortcomings: (i) if the GHD contains a single subquery, EmptyHeaded
arbitrarily chooses the join attribute ordering for that query, otherwise it chooses the orderings
for the subqueries using a simple heuristic; (ii) the width cost metric depends only the input
query Q, so when running Q on different datasets, EmptyHeaded always chooses the same plan;
and (iii) the GHD plan space does not allow plans that can perform multi-way joins after binary
joins. As we demonstrate, there are efficient plans for some queries that seamlessly mix binary
joins and multi-way joins and do not correspond to any GHD-based plan of EmptyHeaded.

3.1.1 Our Contributions

Table 3.1 summarizes how our approach compares against prior solutions. Our main contribution
is a dynamic programming optimizer that generates plans with both binary joins (HJ or INLJ)
and multi-way joins. GraphflowDB implements multi-way joins as a single Index Multiway
Join (IMJ) operator. This operator does two or more adjacency list lookups and intersects
these lists. Let Q be the query whose graph pattern contains m query vertices. Our dynamic
programming optimizer enumerates plans in a bottom-up fashion to evaluate each subquery of Q
with k vertices. For k = 1, each Q1 subquery contains one of the m query vertices in Q evaluated
with a scan operator. For k = 2, ...,m, the optimizer has two choices: (i) joining the relations of
two subqueries Qs1 and Qs2 using HJ; or (ii) extending a subquery Qk-1 with one query vertex
into Qk using the INLJ /IMJ operators. This generates all possible WCOJ plans for the query
as well as a large space of hybrid plans which are not in EmptyHeaded’s plan space.

To rank WCOJ plans, our optimizer uses a new cost metric called intersection cost (i-cost).
I-cost represents the amount of intersection work that a plan P does based on the sizes of the
adjacency lists intersected throughout P . For ranking hybrid plans, we combine i-cost with the
cost of binary joins. Our cost metrics account for the properties of the input graph, such as
the distributions of the forward and backward neighbourhood sizes and output size of different

1LogicBlox is not open-source. Two publications describe how the system chooses join at-
tribute orderings; a heuristics-based [141] and a cost-based [22] technique that uses sampling.
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QVO Binary Joins?

BiGJoin Arbitrarily No

LogicBlox Heuristics or Cost-based1 No

CTJ Heuristic + Cost-Based (uses caching) No

EmptyHeaded Arbitrarily Cost-based: depends on Q

GraphflowDB Cost-based & Adaptive Cost-based: depends on Q and D

Table 3.1: Comparison against DBMSs using worst-case optimal joins.
Q and D refer to the input query and dataset, respectively.

subqueries computed as part of a plan. Unlike EmptyHeaded, this allows our optimizer to choose
different plans for the same query on different input graphs.

To estimate a plan’s cost, we propose a new cardinality estimator that uses a subquery cat-
alogue to estimate the intersection work and the number of intermediate results. The catalogue
contains estimates for: (i) the distribution of adjacency list sizes, where the list is obtained by
extending a vertex of a small graph pattern. (ii) selectivity of subqueries, where the subquery is
obtained by extending a smaller subquery by one query vertex using a multiway join.

Our second contribution is an adaptive technique for choosing the join attribute ordering of
WCOJ subplans during query execution. Consider a WCOJ subplan that extends output tuples
of subquery Qi into a larger subquery Qk. Suppose there are r possible join attribute orderings,
σ1, ..., σr, to perform these extensions. Our optimizer tries to choose the ordering σ∗ with the
lowest cumulative i-cost when extending all partial output tuples of Qi. However, for any specific
tuple t of Qi, there may be another σj that is more efficient than σ∗. Our adaptive executor re-
evaluates the cost of each σj for t based on the actual sizes of the adjacency lists of the vertices
in t, and chooses a new ordering.

We incorporate our optimizer into GraphflowDB and evaluate it across a large class of queries
and datasets. First, we show that our optimizer is capable of choosing close to optimal plans
across many queries. Second, we show that some plans that are not in EmptyHeaded’s plan
space, are up to 68x more efficient than EmptyHeaded’s plans. Finally, we also show that our
adaptive technique improves the run time of some plans by up to 4.3x. In some queries, adaptivity
improves the run time of every plan but more generally, it makes GraphflowDB more robust
against bad join orderings.
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3.2 Preliminaries: Generic Join Algorithm

In this section, we introduce Generic Join [135], the WCOJ algorithm we adopt in GraphflowDB.
Note that the queries we consider in this chapter contain only equi-joins on edge relations with
no further predicates. In the literature, these queries are called subgraph queries [169].

Generic Join evaluates queries one attribute at a time. We describe the algorithm in graph
terms when evaluating Q(VQ, EQ); Ngo et al. [135] and Freitag et al. [65] give equivalent rela-
tional descriptions. Using the graph notation from Section 2.1, the algorithm evaluates queries
by extending one query vertex at a time with two main steps:

• Join Attribute Ordering (JAO): Generic Join first chooses a JAO i.e., an ordering on
the query vertices VQ = {a1, a2, ..., am}, which is a tuple such as σ = (a3, a1, ..., , am). σ
specifies the ordering to evaluate m different subqueries Q1, Q2, ..., Qm. Each Qi(Vi, Ei)
contains the query vertices Vi = {σ[1], ..., σ[i]} ⊆ VQ e.g., V2 = {σ[1], σ[2]} = {a3, a1}.
The query edges Ei are the edges between vertices Vi in Q. We say Qk is the projection of
Q into the first k query vertices of σ. For simplicity, we assume each Qk to be connected.
Otherwise, Generic Join computes expensive Cartesian products to produce intermediate
results, which we will omit in our description.

• Iterative Subquery Evaluation: Generic Join iteratively produces output tuples for each
Qk using Qk−1’s tuples as input. Given |σ| = m, Generic join has m iterations. Each
iteration produces values for ak = σ[k]. Specifically, an iteration k produces a set of k-
matches, i.e., output tuples of size k where each tuple ‘matches’ Qk in the input graph. Let
t[i] denote the ith element in a tuple t and is the vertex ID that attribute ai is bound to.

i) k = 1 iteration: To evaluate Q1, Generic Join produces 1-matches, with each t[0]
matching σ[1] to a different vertex ID in the input graph.

ii) k > 1 iteration: To evaluate Qk, Generic Join performs the following computation
for each (k-1)-match t of Qk-1. First, the algorithm takes the forward adjacency
list of t[i] for each σ[i]→ ak ∈ EQ and the backward adjacency list of t[i] for each
σ[i]← ak∈ EQ, where i≤ k-1 and intersects these lists. The result of the intersection
is the set S = {s1, ..., sℓ} of possible vertex IDs for ak. Then, for each sj ∈ S, one
k-match (t[1], ..., t[k-1], sj) is produced by appending sj to t. If S = {}, no output
tuples are produced.

Consider again the diamond-X query in Figure 3.1b with a JAO σ = (a1, a2, a3, a4). The 4th

iteration takes as input 3-matches of QDX,3 and produces 4-matches for QDX,4 i.e., QDX . Let t
= (v1, v4, v5) be a 3-match, where v1, v4, and v5 match a1, a2, and a3, respectively. In order to
compute S, the set of vertex IDs for a4 given t, Generic Join intersects the forward adjacency
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IMJa4 E(a2,a4),
E(a3,a4)

Results
Accumulator

(c) WCOJ Pipeline.

Figure 3.3: Generic Join with JAO a1a2a3a4 for diamond query in Figure 2.1.

lists of (a2 :v4) and (a3 :v5). Note that Generic Join uses the forward adjacency lists because a2
and a3 are already bound and both have forward edges to a4 in the query i.e., a2→a4 and a3→a4.
Assume S = {v3, v11} then the set of output 4-matches is {(v1, v4, v5, v3), (v1, v4, v5, v11)}.

3.3 Optimizing WCOJ Plans

This section demonstrates our WCOJ plans, the effects of different join attribute orderings we
have identified, and our i-cost metric for WCOJ plans. Throughout this section we present several
experiments for demonstration purposes. The datasets we use in these experiments are described
in Table 3.7 in Section 3.7.

3.3.1 WCOJ Plans and INLJ /IMJ Operators

Each join attribute ordering σ is effectively a different WCOJ plan. Figure 3.3a shows a join tree
equivalent to the evaluation of QDX with a JAO (a1, a2, a3, a4). The top multi-way join operation
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▷◁ a4 in the join tree represents the 4th iteration example above. GraphflowDB implements WCOJ
trees as an operator pipeline. We denote the pipeline with a logical plan shown in Figure 3.3b.
Data flows in a bottom-up fashion. Each node in the logical plan is an operator labelled by the
subquery its output matches. For now, operators pass a single tuple (k-match) using a push-based
Volcano-like execution model [68]. In later chapters, we move towards a vectorized execution
model. The leaf node covers the 1st iteration and each subsequent parent operation covers the
kth iteration for k > 1. Figure 3.3c shows the physical plan that the logical plan in Figure 3.3b
compiles to. Next, we give details of this logical-physical plan mapping and our core physical
operators:

Scan: Leaf nodes of logical plans, which match a single query edge, are evaluated with a Scan
operator.

INLJ /IMJ: Internal nodes of logical plans labelled Qk(Vk, Ek) that have a child labelled Qk–1(
Vk–1, Ek–1) are evaluated with INLJ /IMJ operators. The INLJ /IMJ operators takes as input
(k–1)-matches and extends each tuple t to a set of k-matches. The operators are configured with
one or more adjacency list descriptors (descriptors for short), which indicate the adjacency lists
of appropriate edge relations that the operator needs to use when performing intersections. Each
descriptor is an (i, dir, re) triple, where i is the position of a vertex in t, dir is forward
or backward, and re is the edge relation. For each (k–1)-match t, IMJ first computes the
extension set S = {s1, ..., sℓ} of t by intersecting the adjacency lists described by its descriptors.
IMJ intersects the adjacency lists using iterative 2-way in tandem intersections and then produces
one k-match, (t[1], ..., t[k–1], si), for each si ∈ S. When there is a single descriptor, INLJ is
used and S is the vertices in the adjacency list described by the descriptor.

Multi-way Intersection Optimization: When extending a single (k–1)-match t, we append
each si ∈ S to t, where |S| = ℓ, leading to ℓ many k-matches. Since all ℓ k-matches were ob-
tained from t, they are identical on the first k–1 values matched. Therefore later IMJ operators
in the WCOJ pipeline might use the adjacency lists of these k–1 vertices to perform repeated in-
tersections. In such cases, our IMJ operator caches and reuses all or a subset of the intersections
they make for the last tuple they extend. We next explain this optimization through two examples.
Consider the diamond-X query QDX (recall Figure 3.1b) with a JAO σ = (a2, a3, a1, a4). Let o3
and o4 be the IMJ operators extending the 2-matches to 3-matches and 3-matches to 4-matches,
respectively. Let t = (v1, v2) be a 2-match, where v1 and v2 match a2 and a3, respectively.
o3, when taking t as input, computes an extension set S = {s1, ..., sℓ} and passes each output
3-match (v1, v2, si) to o4 consecutively. Therefore, o4 would intersect the forward adjacency lists
of v1 and v2 ℓ consecutive times. Instead, o4 can compute this intersection for (v1, v2, s1) once
and reuse it for the following ℓ−1 (v1, v2, si) tuples it receives. Similarly, consider a 4-clique
query, which is the same as QDX with an added edge a1→a4. o4, given the same input, would
now intersect the forward adjacency lists of v1, v2, and si. In this example, the intersections that

21



σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

Cache On 2.4 2.9 3.2 3.3 3.3 3.4 4.4 6.5

Cache Off 3.8 3.2 3.2 3.3 3.3 3.4 8.5 10.7

Table 3.2: WCOJ plan run times in seconds with and without intersection cache for diamond-X
on the Amazon (|V |=403K,E=3.38M ) dataset from Stanford’s network analysis project [112].

o4 needs to perform to extend each of the ℓ tuples is different. However, if we order our 2-way in
tandem intersections to start with the forward adjacency lists of v1 and v2, they would all perform
this partial intersection, which we can cache and reuse in each of the ℓ extensions, i.e., in each
extension, we intersect this partial intersection’s result with the forward adjacency list of si.

Caching and reusing the last full or partial intersection overall improves the performance of
WCOJ plans as it reduces the amount of repetitive work in the IMJ operators. This optimiza-
tion also has a very small memory footprint, since we only store at most one full or one partial
intersection at each IMJ operator at any point in time during query execution. As a demon-
strative example, Table 3.2 shows the run time of all WCOJ plans for the diamond-X query
with caching enabled and disabled on the Amazon dataset from the Stanford Network Analysis
Project (SNAP) [112]. The orderings in the table are omitted. Four of the total eight plans use
the intersection cache and improve their run time e.g., σ7 improves by 1.9x.

3.3.2 Effects of Join Attribute Orderings

The work done by a WCOJ plan is commensurate with the “amount of intersections” it performs.
Three main factors affect intersection work and therefore the run time of a WCOJ plan P :

i) directions of the adjacency lists P intersects;
ii) the size of intermediate results P generates; and
iii) how much P uses the intersection cache.

We discuss each effect next.

Directions of Intersected Adjacency Lists:

Perhaps surprisingly, there are WCOJ plans that have very different run times only because
they compute their intersections using different directions of the adjacency lists. The simplest
example of this is the triangle query E(a1, a2), E(a2, a3), E(a1, a3) i.e., the graph pattern a1→a2,
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Figure 3.4: Queries used to demonstrate the effects of JAOs.

BerkStan Live Journal

JAO run time (sec) Si i-cost run time (sec) Si i-cost

(a1, a2, a3) 2.6 8M 490M 64.4 69M 13.1B
(a2, a3, a1) 15.2 8M 55,8B 75.2 69M 15.9B
(a1, a3, a2) 31.6 8M 55,9B 79.1 69M 17.3B

Table 3.3: Run time (secs), size of intermediate results (Si), and
i-cost of different JAOs for the asymmetric triangle query.

a2→a3, a1→a3. This query has 3 JAOs, all of which have the same SCAN operator, which scans
each u→v edge in the input graph as a 2-match, followed by a 2-way intersection. The direction
of the intersections for each JAO are different and none can use the intersection cache:
• σ1 (a1, a2, a3): given (a1 :u, a2 :v), intersects both u and v’s forward lists.
• σ2 (a2, a3, a1): given (a2 :u, a3 :v), intersects both u and v’s backward lists.
• σ3 (a1, a3, a2): given (a1 :u, a3 :v), intersects u’s forward and v’s backward lists.

Table 3.3 shows a demonstrative experiment studying the performance of each plan on the Berk-
Stan and LiveJournal datasets also from SNAP (the i-cost column in the table will be discussed
in Section 3.3.3 momentarily). For example, σ1 is 12.1x faster than σ2 on the BerkStan graph.
Which combination of adjacency list directions is more efficient depends on the structural prop-
erties of the input graph, e.g., forward and backward adjacency list distributions.

Size of Intermediate Results:
Different WCOJ plans generate different partial matches with different sizes and intersection
work. Consider the tailed triangle query in Figure 3.4b, which can be evaluated by two categories
of WCOJ plans:

• EDGE-WEDGE: Some plans, such as JAO (a1, a2, a4, a3), extend each scanned edge u→v
i.e., (a1 :u, a2 :v) match to wedges (u→v←w) i.e., (a1 :u, a2 :v, a3 :w) matches, and then
closes the cycle of triangle from one of the 2 edges in the wedge.
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Amazon Epinions

JAO run time (secs) Si i-cost run time (secs) Si i-cost

(a1, a2, a3, a4) 0.9 15M 176M 0.9 4M 0.9B
(a1, a3, a2, a4) 1.4 15M 267M 1.0 4M 0.9B
(a2, a3, a1, a4) 2.4 15M 267M 1.7 4M 1.0B
(a1, a4, a2, a3) 4.3 35M 640M 56.5 55M 32.5B
(a1, a4, a3, a2) 4.6 35M 1.4B 72.0 55M 36.5B

Table 3.4: Run time (secs), size of intermediate results (Si), and i-cost
of different JAOs for the tailed triangle query.

Amazon Epinions

JAO run time (sec) Si i-cost run time (sec) Si i-cost

(a2, a3, a1, a4) 1.0 11M 0.1B 0.9 2M 0.1B
(a1, a2, a3, a4) 3.0 11M 0.3B 4.0 2M 1.0B

Table 3.5: Run time (secs), size of intermediate results (Si), and i-cost
of some JAOs for the symmetric diamond-X query.

• EDGE-TRIANGLE: Another group of plans, such as JAO (a1, a2, a3, a4), extend scanned
edges to triangles and then extend the triangles by one edge.

Let |E|, |W |, and |△| denote the number of edges, wedges, and triangles. Ignoring the directions
of extensions and intersections, the EDGE-WEDGE plans do |E|many extensions plus |W |many
intersections, whereas the EDGE-TRIANGLE plans do |E| many intersections and |△| many
extensions. Table 3.4 shows the run times of the different plans on Amazon and Epinions datasets
with intersection caching disabled (again the i-cost column will be discussed momentarily). The
first 3 rows are the EDGE-TRIANGLE plans. EDGE-TRIANGLE plans are significantly faster than
EDGE-WEDGE plans because when evaluated on a single edge relation, |W | is always at least
|△| and often much larger. Which JAOs will generate fewer intermediate matches depends on
several factors: i) the structure of the query; ii) the selectivity of joining different edge relations;
and iii) the structural properties of the input graph, e.g., graphs with low clustering coefficient
generate fewer intermediate triangles than those with a high clustering coefficient.
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Intersection Cache Hits

The intersection cache of our IMJ operator is used more if the JAO extends (k–1)-matches to
ak using adjacency lists with indices from a1...ak–2. Intersections that access the (k–1)th index
cannot be reused because ak–1 is the result of an extension by the last INLJ /IMJ operators and
will match to different vertex IDs. Instead, those accessing indices a1...ak−2 can potentially be
reused. We demonstrate that some plans perform significantly better than others only because
they can use the intersection cache. Consider a variant of the diamond-X query in Figure 3.4a.
One type of WCOJ plans for this query extend u→v edges to (u, v, w) symmetric triangles by
intersecting u’s backward and v’s forward adjacency lists. Then each triangle is extended to
complete the query, intersecting again the forward and backward adjacency lists of one of the
edges of the triangle. There are two sub-groups of JAOs that fall under this type of plans: (i)
(a2, a3, a1, a4) and (a2, a3, a4, a1), which are equivalent plans due to symmetries in the query, so
will perform exactly the same operations; and (ii) (a1, a2, a3, a4), (a3, a1, a2, a4), (a3, a4, a2, a1),
and (a4, a2, a3, a1), which are also equivalent plans. Importantly, all of these plans cumulatively
perform exactly the same intersections but those in group (i) and (ii) have different orders in
which these intersections are performed, which lead to different intersection cache use.

Table 3.5 shows the performance of one representative plan from each sub-group: (a2, a3, a1,
a4) and (a1, a2, a3, a4), on the Amazon and Epinions datasets. The (a2, a3, a1, a4) plan is 4.4x
faster on Epinions and 3x faster on Amazon. This is because when (a2, a3, a1, a4) extends
(a2, a3, a1) triangles to complete the query, it will be accessing a2 and a3, so the first two indices
in the triangles. For example if (a2:v0, a3:v1) extended to t triangles (v0, v1, v2),...,(v0, v1, vt+2),
these partial matches will be fed into the next IMJ operator consecutively, and their extensions
to a4 will all require intersecting v0 and v1’s backward adjacency lists, so the cache would avoid
t–1 intersections. Instead, the cache will not be used in the (a1, a2, a3, a4) plan as each input
3-match in the last intersection has a different ID for a3.

3.3.3 Cost Metric for WCOJ Plans

We introduce a new cost metric called intersection cost (i-cost), which we define as the size of
adjacency lists that will be accessed and intersected within a WCOJ plan. Consider a WCOJ
plan σ that evaluates subqueries Q2,...,Qm, respectively, where Q=Qm. Let t be a (k–1)-match
of Qk–1 and suppose t is extended to instances of Qk by intersecting a set of adjacency lists,
described with adjacency list descriptors Ak–1. Formally, i-cost of σ is:∑

Qk–1∈Q2...Qm−1

∑
t∈Qk–1

∑
(i,dir)∈Ak–1

s.t. (i, dir) is accessed

|t[i].dir| (3.1)

25



We discuss how we estimate i-costs of plans in Section 3.5. For now, note that Equation 3.1
captures the three effects of JAOs we identified: (i) the |t.dir| quantity captures the sizes of the
adjacency lists in different directions; (ii) the second summation is over all intermediate matches,
capturing the size of intermediate results; and (iii) the last summation is over all adjacency lists
that are accessed, so ignores the lists in the intersections that are cached. For the demonstrative
experiments we presented in the previous section, we also report the actual i-costs of different
plans in Tables 3.3, 3.4, and 3.5. The actual i-costs are measured in a profiled run of each query.
Notice that in each experiment, i-costs of plans rank in the correct order of run times of plans.

There are alternative cost metrics from the literature, such as the Cout [44] and Cmm [107]
metrics, that would also do reasonably well in differentiating good and bad WCOJ plans. How-
ever, these metrics capture only the effect of the number of intermediate matches. For exam-
ple, they would not differentiate the plans in the asymmetric triangle query or the symmetric
diamond-X query, i.e., the plans in Tables 3.3 and 3.5 have the same actual Cout and Cmm costs.

3.4 Full Plan Space & Dynamic Programming Optimizer

In this section we describe our full plan space, which contain plans with HJ and INLJ /IMJ, the
costs of these plans, and our dynamic programming optimizer.

3.4.1 Hybrid Plans and Hash Join (HJ) Operator

In Section 3.3, we introduced our WCOJ plans as operator pipelines with the Scan operator
as a leaf with subsequent IMJ operators. Our full plan space adds to our WCOJ plans, hybrid
plans i.e., bushy plans by introducing the joining of intermediate relations with HJ which can be
seamlessly mixed with WCOJ subplans.

We describe our full plan space in terms of logical plans. A plan is a rooted tree as follows.
Below, Qk refers to a projection of Q onto an arbitrary set of k query vertices.

• Leaf nodes are labelled with a single query edge of Q.
• Root is labelled with Q.
• Each internal node ok is labelled with Qk={Vk, Ek}, with the projection constraint that Qk

is a projection of Q onto a subset of query vertices. ok has either one child or two children.
If ok has one child ok–1 with label Qk–1={Vk–1, Ek–1}, then Qk–1 is a subgraph of Qk missing
one query vertex qv ∈ Vk and qv’s incident edges in Ek. This represents a WCOJ extension
of partial matches of Qk–1 by one query vertex to Qk. If ok has two children oc1 and oc2 with

26



▷◁

▷◁

▷◁

E(a1,a2) E(a2,a3)

▷◁

E(a3,a4) E(a4,a5)

E(a5,a6) E(a6,a1)

Figure 3.5: Example join tree not in EmptyHeaded’s GHD plan space for the 6-cycle query:
E(a1, a2), E(a2, a3), E(a3, a4), E(a4, a5), E(a5, a1).

labels Qc1 and Qc2, respectively, then Qk = Qc1 ∪ Qc2 and Qk ̸= Qc1 and Qk ̸= Qc2. This
represents a binary join of matches Qc1 and Qc2 to compute Qk.

As before, leaves map to SCAN operators, an internal node ok with a single child maps to the
IMJ operators. If ok has two children, then it maps to the HJ operator as described in Chapter 2.

Our plans are highly expressive and contain several classes of plans: (1) WCOJ plans from
the previous section, in which each internal node has one child; (2) binary join plans, in which
each node has two children and satisfy the projection constraint; and (3) hybrid plans that sat-
isfy the projection constraint. We show in our evaluation section that our hybrid plans contain
EmptyHeaded’s minimum-width GHD-based hybrid plans that satisfy the projection constraint.
For example the hybrid plan in Figure 3.2d corresponds to a GHD for the diamond-X query with
width 3/2. In addition, our plan space also contains hybrid plans that do not correspond to a
GHD-based plan. Figure 3.5 shows an example hybrid plan for the 6-cycle query that is not in
EmptyHeaded’s plan space. As we show in our evaluations, such plans can be very efficient for
some queries.

The projection constraint prunes two classes of plans:

1. Our plan space does not contain binary join plans that first compute open wedges and then
close them. Consider a triangle QT which is a subquery of a larger query Q. Suppose QT is
a1→a2→a3, a1→a3. Then due to the projection constraint, we do not enumerate any plan
that contains an open wedge QOT e.g., a1→a2→a3, of QT , with say a later binary join to
close the cycle and add the a1→a3 edge. This is because QOT is not a projection of Q,
as it does not contain the a1→a3 edge. Such binary join plans are in the plan spaces of
existing optimizers, e.g., Postgres, MySQL, and Neo4j. This is not a disadvantage because
for each such plan, there is a more efficient WCOJ plan that computes triangles directly with
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(a) Plan P1.
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(b) Plan P2.

Scan a1

INLJa1 E(a1,a2)

IMJa3 E(a1,a3),
E(a2,a3)

Build HT on a2

Scan a3

INLJa3 E(a3,a4)

IMJa2 E(a2,a3),
E(a2,a4)

Probe HT on a2

Accumulator

(c) Pipelines for P1.

Figure 3.6: Two plans where P1 joins two subqueries that share a query edge and
P2 joins two subqueries that do not. Shows also operator pipelines of P1.

an intersection of two already-sorted adjacency lists. Specifically, we force the triangles to
be computed by extending edges (which are projections of Q) directly to QT using WCOJ
multiway join intersections.

2. More generally, some of our hybrid plans contain the same query edge ai→aj in multiple
parts of the join tree, which may look redundant because ai→aj is effectively joined multiple
times. There can be alternative plans that remove ai→aj from all but one of the sub-trees.
For example, consider the two hybrid plans P1 and P2 for the diamond-X query in Figures
3.6a and 3.6b, respectively. P2 is not in our plan space because it does not satisfy the
projection constraint because a2→a3 is not in the right sub-tree. Omitting such plans is
also not a disadvantage because we duplicate ai→aj only if it closes cycles in a sub-tree,
which effectively is an additional filter that reduces the partial matches. For example, on
the Amazon graph dataset, P1 takes 14.2 seconds and P2 takes 56.4 seconds, which is 3.97x
slower than P1.

Finally, Figure 3.6c also shows the HJ physical plan pipelines that are generated for the plan P1

in Figure 3.6a. These pipelines execute in order so the left one executes fully and once done, the
second pipeline on the right executes.
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3.4.2 Cost Metric for General Plans

A HJ operator performs a very different computation than IMJ operators, so the cost of HJ needs
to be normalized with i-cost. This is an approach taken by DBMSs to merge costs of multiple
operators, e.g., a scan and a group-by, into a single cost metric. Consider a HJ operator ok that
will join matches of Qc1 and Qc2 to compute Qk. Suppose there are n1 and n2 instances of Qc1

and Qc2, respectively. Then ok will hash n1 number of tuples into a table and probe this table n2

times. We compute two weight constants w1 and w2 and calculate the cost of ok as w1 × n1 +
w2×n2 i-cost units. These weights can be hard-coded as done in the Cmm cost metric [107], but
we pick them empirically.

3.4.3 Dynamic Programming Optimizer

Algorithm 1 shows the pseudocode of our optimizer, which takes as input a query Q(VQ, EQ).
We start by enumerating and computing the cost of all WCOJ plans (line 1). We then initialize
the cost of computing 2-vertex subqueries of Q i.e., a query edge, to the number of edges/records
matching in the query edge/relation (line 2). If ai

re−→aj is a query edge, then let the number of
edges with label re be µ(re), which is the initial cost we give to the subquery of ai

re−→aj . Then
starting from k = 3 up to |VQ|, for each k-vertex subquery Qk of Q, we find the lowest cost plan
P ∗
Qk

to compute Qk in three different ways:

i) P ∗
Qk

is the lowest-cost WCOJ plan that we enumerated. (line 5).
ii) P ∗

Qk
extends the best plan P ∗

Qk–1
for a Qk–1 by an INLJ /IMJ operator. (Qk–1 contains one

fewer query vertex than Qk). (lines 7-10).
iii) P ∗

Qk
joins the output of two best plans P ∗

Qc1
and P ∗

Qc2
for Qc1 and Qc2, respectively, with a

HJ . (lines 12-15).

The best plan for each Qk is stored in a subquery map. We enumerate all WCOJ plans because
the best WCOJ plan P ∗

Qk
for Qk is not necessarily an extension of the best WCOJ plan P ∗

Qk–1
for

a Qk–1 by one query vertex. That is because P ∗
Qk

may be extending a worse plan P bad
Qk–1

for Qk–1

if the last extension has a good intersection cache utilization. Strictly speaking, this problem can
arise when enumerating hybrid plans too, if an INLJ /IMJ operator in case ii) above follows a
HJ. A full plan space enumeration would avoid this problem completely but we adopt dynamic
programming to make our optimization time efficient, i.e., to make our optimizer efficient, we
are potentially sacrificing picking the plan with the lowest estimated-cost.

Finally, our optimizer omits plans that contain a Hash Join that can be converted to an
INLJ /IMJ operator. Consider the a1→a2→a3 query. Instead of using a HASH-JOIN to mate-
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rialize the a2→a3 edges and then probe a scan of a1→a2 edges, it is more efficient to use an
INLJ /IMJ to extend a1→a2 edges to a3 using a2’s existing forward adjacency list.

Algorithm 1 DP Optimization Algorithm

Input: Q(VQ, EQ)
1: WCOJP = enumerateAllWCOJPlans(Q) // WCOJ plans
2: QPMap: init each ai

re−→aj’s cost to the µ(re)
3: for k = 3, ..., |VQ| do
4: for Vk ⊆ V s.t. |Vk|=k do
5: Qk(Vk, Ek) = Projection of Q on Vk; bestP = WCOJP(Qk); minC =∞
6: // Find best plan that extends to Qk by one query vertex
7: for vj ∈ Vk let Qk–1(Vk–1, Ek–1) = Projection of Qk on Vk–vj do
8: P = QPMap(Qk–1).extend(Qk);
9: if cost(P) < minC then

10: bestPlan = P;
11: // Find best plan that generates Qi with a binary join
12: for Vc1, Vc2 ⊂ Vk: Qc1 = Projection of Qk on Vc1, Qc2 = Projection of Qk on Vc2 do
13: P = join(QPMap(Qc1), QPMap(Qc2));
14: if cost(P) < minC then
15: bestPlan = P;
16: QPMap(Qk) = bestPlan;
17: return QPMap(Q);

Plan Generation For Very Large Queries:

Our optimizer can take a very long time to generate a plan for large queries. For example,
enumerating only the best WCOJ plan for a 20-clique requires inspecting 20! different JAOs,
which would be prohibitive. To overcome this, we further prune plans for queries with more than
10 query vertices as follows:

• We avoid enumerating all WCOJ plans. Instead, WCOJ plans get enumerated in the DP part
of the optimizer. Therefore, we potentially ignore good WCOJ plans that benefit from the
intersection cache.
• At each iteration k, out of the tk many plans that evaluate a k-vertex subquery of Q we only

keep the r lowest cost plans (5 by default). At iteration k + 1, we will extend these r plans
to tk+1 many plans that evaluate (k+1)-vertex subqueries but we will again keep on the top
r, so on and so forth.
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(Qk–1 A |A| µ(Qk)
(1 rx−→2; L1:2

rx−→) |L1|:4.5 4.5
(1 rx−→2; L1:2

ry−→) |L1|:8.0 8.0
(1 rx−→2; L1:1

rx−→, L2:2
rx−→) |L1|:4.2, |L2|:5.1 1.5

(1la rx−→2; L1:1
rx←−, L2:2

rx←−) |L1|:9.8, |L2|:8.4 2.5
(...; ...) ... ...

Table 3.6: A subquery catalogue. A is a set of adjacency list descriptors; µ is selectivity.

3.5 Cost & Cardinality Estimation

To assign costs to the plans we enumerate, we need to estimate: (1) the size of intermediate results
that different plans generate; (2) the i-costs of extending a subquery Qk–1 to Qk by extending
or intersecting from a set of adjacency lists in INLJ /IMJ operators; and (3) the costs of HJ
operators. We focus on the setting where each subquery Qk is joining multiple edge relations. In
the remainder of this section, we describe how we make these estimations using a data structure
called the subquery catalogue. However, we emphasize that our optimizer can be used with any
estimation technique that can estimate i-cost and size of partial matches of subqueries.

Table 3.6 shows an example catalogue. Each entry contains a key (Qk–1, A, alkk ), where A is
a set of adjacency list descriptors. Let Qk be the subgraph that extends Qk–1 with query edges in
A to a query vertex ak. Each entry contains two estimates for extending a match of a subquery
Qk–1 to Qk by intersecting the adjacency lists A describes:

i) |A|: Average sizes of the lists in A that are intersected.
ii) µ(Qk): Average number of Qk that will extend from one Qk–1, i.e., the average number of

vertices that: are in the extension set of intersecting the adjacency lists A.

In Table 3.6, the query vertices of the input subgraph Qk–1 are shown with canonicalized
integers, e.g., 0, 1 or 2, instead of the non-canonicalized ai notation we used before. This is to
note that we account for unique subgraphs, e.g., only one of 0→1→2 and 0←1←2 would be
found in the Qk–1 column. Note that Qk–1 can be extended to Qk using different adjacency lists
in A with different i-costs. The third and fourth entries of Table 3.6, which extend a single edge
to an asymmetric triangle, demonstrate this. When canonicalizing a query graph, for a lookup,
we rely on isomorphism and finding a mapping from the query vertices of an input graph to the
query vertices of Qk−1.
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3.5.1 Catalogue Construction

For each input dataset G, we construct a catalogue containing all entries that extend an at most
h-vertex subgraph to an (h+1)-vertex subgraph. By default we set h to 3. When generating a
catalogue entry for extending Qk–1 to Qk, we do not find all instances of Qk–1 and extend them
to Qk. Instead, we first sample Qk–1. We take a WCOJ plan that extends Qk–1 to Qk. We then
sample z random edges (1000 by default) uniformly at random from G in the SCAN operator. The
last INLJ /IMJ operator of the plan extends each partial match t it receives to Qk by intersecting
the adjacency lists in A. The operator measures the size of the adjacency lists in A and the
number of Qk’s this computation produced. These measurements are averaged and stored in the
catalogue as |A| and µ(Qk) columns.

3.5.2 Cost Estimations

We use the catalogue to do three estimations as follows:

1. Results size of Qk: To estimate the results size of Qk, we pick a WCOJ plan P that computes
Qk through a sequence of (Qj–1, Aj) extensions. The estimated cardinality of Qk is the product
of the µ(Aj) of the (Qj–1, Aj) entries in the catalogue. If the catalogue contains entries with
up to h-vertex subgraphs and Qk contains more than h nodes, some of the entries we need for
estimating the cardinality of Qk will be missing. Suppose for calculating the cardinality of Qk,
we need the µ(Ax) of an entry (Qx–1, Ax, lx) that is missing because Qx–1 contains x–1> h query
vertices. Let z=(x–h–1). In this case, we remove each z-size set of query vertices a1, ...az from
Qx–1 and Qx, and the adjacency list descriptors from Ax that include 1, ..., z in their indices. Let
(Qy–1, Ay, ly) be the entry we get after a removal. We look at the µ(Ay) of (Qy–1, Ay, ly) in the
catalogue. Out of all such z set removals, we use the minimum µ(Ay) we find.

As an example, consider a missing entry for extending Qk–1= 1→2→3 by one query vertex
to 4 by intersecting three adjacency lists all pointing to 4 from 1, 2, and 3. For simplicity,
assume the extensions are from the same edge relation. The resulting subquery Qk will have two
triangles: (i) an asymmetric triangle touching edge 1→2; and (ii) a symmetric triangle touching
2→3. Suppose entries in the catalogue indicate that an edge on average extends to 10 asymmetric
triangles but to 0 symmetric triangles. We estimate that Qk–1 will extend to zero Qk taking the
minimum of our two estimates.

2. I-cost of INLJ /IMJ operators: Consider an INLJ /IMJ operator ok extending Qk–1 to Qk

using adjacency lists A. We have two cases:
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• No intersection cache: We estimate ok’s i-cost as

i-cost(ok) = µ(Qk–1)×
∑
Li∈A

|Li| (3.2)

Here, µ(Qk–1) is the estimated cardinality of Qk–1, and |Li| is the average size of the adja-
cency list Li ∈ A that are logged in the catalogue for entry (Qk–1, A), i.e., the |A| column.
• Intersection cache utilization: If two or more of the adjacency list in A, say Li and Lj , access

the vertices in a partial match Qj that is smaller than Qk–1, then we multiply the estimated
sizes of Li and Lj with the estimated cardinality of Qj instead of Qk–1. This is because we
infer that ok will utilize the intersection cache for intersecting Li and Lj .

Reasoning about utilization of intersection cache is critical in picking good plans. For exam-
ple, recall our experiment from Table 3.2 to demonstrate that the intersection cache broadly
improves all plans for the diamond-X query. Our optimizer, which is “cache-conscious” picks σ2

(a2a3a4a1). Instead, if we ignore the cache and make our optimizer “cache-oblivious” by always
estimating i-cost with Equation 3.2, it picks the slower σ4 (a1a2a3a4) plan. Similarly, our cache-
conscious optimizer picks (a2, a3, a1, a4) in our experiment from Table 3.5. Instead, the cache-
oblivious optimizer assigns the same estimated i-cost to plans (a2, a3, a1, a4) and (a1, a2, a3, a4),
so cannot differentiate between these two plans and picks one arbitrarily.

3. Cost of Hash Join operator: Consider a HJ operator joining Qc1 and Qc2. The estimated
cost of this operator is simply w1n1 + w2n2 (recall Section 3.4.2), where n1 and n2 are now the
estimated result sizes of Qc1 and Qc2, respectively.

3.5.3 Limitations

Similar to Markov tables [13] and MD- and Pattern-tree summaries [115], our catalogue is an es-
timation technique that is based on storing information about small size subgraphs and extending
them to make estimates about larger subgraphs. We review these techniques in detail and dis-
cuss our differences in Chapter 6. Here, we discuss several limitations that are inherent in such
techniques. We emphasize again that our optimizer can be used with more advanced cardinality
estimation techniques.

First, as expected our estimates (both for i-cost and results size) get worse as the size of the
subgraphs for which we make estimates increase beyond h. Equivalently, as h increases, our esti-
mates for fixed-size large queries get better. At the same time, the size of the catalogue increases
significantly as h increases. Similarly, the size of the catalogue increases as graphs get more
heterogeneous, i.e., contain more edge relations. Second, using larger sample sizes, i.e., larger z
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Figure 3.7: Input graph for adaptive JAO example.

values, increase the accuracy of our estimates but require more time to construct the catalogue.
Therefore h and z respectively trade off catalogue size and creation time with the accuracy of
estimates. We provide demonstrative experiments of these tradeoffs in our evaluation.

3.6 Adaptive WCOJ Plan Evaluation

Recall that the |A| and µ statistics stored in a catalogue entry (Qk–1, A), are estimates of the
adjacency list sizes (and selectivity) for matches of Qk–1. These are estimates based on averages
over many sampled matches of Qk–1. In practice, actual adjacency list sizes and selectivity of
individual matches of Qk–1 can be very different. Let us refer to parts of plans that are chains
of one or more INLJ /IMJ operators as WCOJ subplans. Consider a WCOJ subplan of a fixed
plan P that has a JAO σ∗ and extends partial matches of a subquery Qi to matches of Qk. Our
optimizer picks σ∗ based on the estimates of the average statistics in the catalogue. Our adaptive
evaluator updates our estimates for individual matches of Qi (and other subqueries in this part of
the plan) based on actual statistics observed during evaluation and possibly changes σ∗ to another
JAO for each individual match of Qi.

Example:

Consider the input graph G shown in Figure 3.7. G contains 3n edges. Consider the diamond-X
query and the WCOJ plan P with σ = (a2, a3, a4, a1). Readers can verify that this plan will
have an i-cost of 3n: 2n from extending solid edges, n from extending dotted edges, and 0 from
extending dashed edges. Now consider the following adaptive plan that picks σ for the dotted
and dashed edges as before but σ′ = (a2, a3, a1, a4) for the solid edges. For the solid edges, σ′

incurs an i-cost of 0, reducing the i-cost to n.

3.6.1 Adaptive Plans

We optimize queries as follows. First, we get a fixed plan P from our dynamic programming
optimizer. If P contains a chain of two or more INLJ /IMJ operators oi, oi+1..., ok, we replace
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(a) Adaptive WCOJ plan.
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(b) Adaptive WCOJ pipeline.

Figure 3.8: Example adaptive WCOJ plan. Shows both the logical and operator pipelines.

it with an adaptive WCOJ plan. The adaptive plan extends the first partial matches Qi that oi
takes as input in all possible connected ways to Qk. We fix the first two query vertices in a
JAO and pick the rest adaptively. Figure 3.8 shows the adaptive version of the fixed plan for the
diamond-X query. Figure 3.8b shows the adaptive version of the fixed plan for the diamond-X
query. More generally, we adapt each operator pipeline and therefore can adapt hybrid plans.

3.6.2 Adaptive Operators

Unlike the operators in fixed plans, our adaptive operators can feed their outputs to multiple
operators. An adaptive operator oi is configured with a function f that takes a partial match t of
Qi and decides which of the next operators should be given t. f consists of two high-level steps:
(1) For each possible σj that can extend Qi to Qk, f re-evaluates the estimated i-cost of σj by
re-calculating the cost of plans using updated cost estimates (explained momentarily). oi gives
t to the next INLJ /IMJ operator of σ∗

j that has the lowest re-calculated cost. The cost of σj

is re-evaluated by changing the estimated adjacency list sizes that were used in results size and
i-cost estimations with actual adjacency list sizes we obtain from t.

Example:

Consider the diamond-X query from Figure 3.1b and suppose we have an adaptive plan in which
the SCAN operator matches edges to (a2, a3), so for each edge needs to decide whether to pick
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the ordering σ1 = (a2, a3, a4, a1) or σ2 = (a2, a3, a1, a4). Suppose the catalogue estimates the
sizes of |a2→| and |a3→| as 100 and 2000, respectively. So we estimate the i-cost of extending
an (a2, a3) edge to (a2, a3, a4) as 2100. Suppose the selectivity µj of the number of triangles this
intersection will generate is 10. Suppose we read an edge u→v where u’s forward adjacency
list size is 50 and v’s backward adjacency list size is 200. Then we update our i-cost estimate
directly to 250 and µj to 10 × (50/100) × 200/2000 = 0.5.

As we show in our evaluations, adaptive JAO selection improves the performance of many
WCOJ plans but more importantly guards our optimizer from picking bad JAOs.

3.7 Evaluation

In this section, we demonstrate the efficiency of the plans that our query optimizer generates.
Before presenting the experiments, we describe the hardware, datasets, and queries we use.

3.7.1 Setup

Hardware: We use a single machine that has two Intel E5-2670 @2.6GHz CPUs and 512 GB
of RAM. The machine has 16 physical cores and 32 logical cores. All code runs on openjdk-17.
We set the maximum size of the JVM heap to 500 GB and keep the minimum heap size of the
JVM as is. We use only one physical core except for our scalability experiments in Section 3.7.8.

Domain Name Nodes Edges

Social Epinions (Ep) 76K 509K
LiveJournal (LJ) 4.8M 69M
Twitter (Tw) 41.6M 1.46B

Web BerkStan (BS) 685K 7.6M
Google (Go) 876K 5.1M

Product Amazon (Am) 403K 3.5M
Citation Patent (Pa) 3.7M 16.5M

Table 3.7: Datasets used.

Datasets: The datasets we use are in Table 3.7. They are obtained from the Stanford Large
Network Dataset Collection [112] except for the Twitter graph, prepared by Kwak et al. [102].
Our datasets differ in several structural properties: (1) size; (2) skew distribution of forward and
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backward adjacency lists; and (3) average clustering coefficients, which is the ratio of number of
triangles to the total possible in the ego-graph of a node. The datasets also come from a variety
of application domains e.g., social networks, the web, and product co-purchasing. Each dataset
catalogue was generated with z = 1000 and h = 3 except for Twitter, where we set h = 2.

Queries: All datasets are made of a single edge relation. In some cases, we split them into multi-
ple edge relations randomly as done in prior work [28, 76]. For a query Q, we use the notation Qi

to refer to evaluating Q when the dataset is randomly split into edge relations {R1, R2, . . . , Ri}.
For example, evaluating Q2 on Amazon indicates that each edge in Amazon and each edge rela-
tion in Q is assigned to one of two edge relations R1 or R2. If a query is made of self-joins on a
single edge relation, we simply refer to it as Q.

Execution: We ran each experiment twice, a first time to warm-up the system, and a second time
to record the measurement.

3.7.2 Evaluation Overview

In these experiments, we aim to answer five questions: (1) How good are the plans our optimizer
chooses? (2) Which type of plans work better for which queries? (3) How much benefit do we
get from adapting JAOs at run time? (4) How do our plans and execution engine compare against
EmptyHeaded (EH), which is the closest to our work and the most performant baseline we are
aware of? (5) How do our plans compare against prior work titled “Flexible Caching in Trie
Joins”, or CTJ for short [91], which is another algorithm that extends the WCOJ algorithm LFTJ
with caching [179]?

We tested the scalability of our single-threaded and parallel implementation on our largest
graphs LiveJournal and Twitter. We compare our plans on big queries against the subgraph
matching algorithm CFL [29] which optimizes for much larger queries. We will give detailed
overviews of EH, CTJ, and CFL in later sections when we present experiments that use them.
Finally, for the completeness of our study, we compare our cardinality estimator against that of a
more traditional RDBMS, that of Postgres.

We used the 14 queries shown in Figure 3.9, which contain both acyclic and cyclic queries
with dense and sparse connectivity with up to 7 query vertices and 21 query edges. To give a
sense of the scale, we report in Table 3.8 the output query size when evaluated with each dataset
as a single edge relation. In some experiments, we use “labelled” versions of these queries. In
these versions, we split the datasets among multiple relations that represent different edge labels
and each query edge gets one of these labels. In such cases, the queries have smaller output size.
The majority of these queries are obtained from real applications and from the literature e.g., Q1
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and Q2 are used by Aberger et al. [11] and Ammar et al. [20], Q2 − 7 are used by Lai et al.
in [114], and Q12 is used by Qiu et al. [151].
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Figure 3.9: Query Examples.

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Amazon 11.6M 118.2M 110.0M 59.0M 64.8M 37.8M 118.9M

Google 28.2M 375.3M 358.4M 239.9M 295.8M 217.0M 2.0B

Epinions 3.6M 326.3M 305.0M 87.0M 100.3M 32.0M 320.6M

Q8 Q9 Q10 Q11 Q12 Q13 Q14

Amazon 558.7M 3.1B 5.8B 3.1B 4.5B 30.2B 907.3M

Google 3.9B 42.5B 61.5B 173.1B 34.2B 266.4B 256.6B

Epinions 12.5B 262.1B 1125.2B 7865.1B 1544.5B 39502.0B 32.9B

Table 3.8: Output size for queries in Figure 3.9 on the Amazon, Google, and Epinions datasets.

3.7.3 Plan Suitability For Different Queries and Optimizer Evaluation

In order to evaluate how good the plans our optimizer generates are, we compare the run time of
its chosen plan against the plan spectrum of the query i.e., the run time of all plans GraphflowDB
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enumerates for that query on a particular dataset. This also allows us to study which types of
plans are suitable for which queries. We generated the plan spectrums of Q1− 8 and Q11− 13
on Amazon as a single edge relation, Epinions split into 3 edge relations, and Google split into
5 edge relations. The spectrums of Q9 − 10 on the three datasets and Q12 − 13 on Epinions
took a prohibitively long time to generate and are omitted. Figures 3.10 and 3.11 show the
GraphflowDB plan spectrums for queries Q1 − 8 and Q11 − 13, respectively. Each dot in the
figures is the run time of a plan and ‘×’ indicates the plan our optimizer chose. Throughout these
experiments, we use the term “optimal plan” to refer to the executed plan with the lowest run
time, i.e., the plan corresponding to the lowest dot in our plan spectrum charts.

We first observe that different types of plans are more suitable for different queries. The main
structural properties of a query that govern which types of plans will perform well are how large
and how cyclic the query is. For clique-like queries, such as Q5, and small cycle queries, such
as Q3, the best plans are the WCOJ ones. On acyclic queries, such as Q11 and Q13, binary join
plans are best on some datasets and WCOJ plans on others. On acyclic queries WCOJ plans are
equivalent to left deep binary join plans that only use INLJ, which are worse than bushy binary
join plans on some datasets. Finally, hybrid plans are best plans for queries that contain small
cyclic structure that do no share edges e.g., Q8.

The most interesting query is Q12, which is a 6-cycle query. Q12 can be evaluated efficiently
with both WCOJ and hybrid plans (and reasonably well with some binary join plans). The hybrid
plans first perform binary joins to compute 4-paths, and then extend 4-paths into 6-cycles with
a multi-way join intersection. Figure 3.5 from Section 3.4.1 shows an example of such hybrid
plans. These plans do not correspond to the generalized hypertree decompositions in the plan
space of EmptyHeaded. On the Amazon dataset, one of these hybrid plans is optimal and our
optimizer chooses that plan. On the Google dataset, our optimizer chooses an efficient binary
join plan although the optimal plan is a WCOJ one.

The plans of our optimizer were broadly close to optimal across our experiments. Specifi-
cally, our optimizer’s plan was optimal in 15 of our 31 spectrums, was within 1.4x of the optimal
in 21 spectrum and within 2x in 28 spectrums. In 2 of the 3 cases we were more than 2x of
the optimal, the absolute run time difference was in sub-seconds. Ignoring queries whose plans
generally ran in sub-second latency, there was only one experiment in which our plan was not
close to the optimal plan, which is shown in Figure 3.11b. Observe that our optimizer chooses
different types of plans across different types of queries. In addition, as we demonstrated with
Q12 above, we can pick different plans for the same query on different datasets (Q8 and Q13 are
other examples). Finally, our optimizer generated a plan within 331ms in all of our experiments
except for Q75 on Google which took 1.4 secs.
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Figure 3.10: Run time (secs) of GraphflowDB plan spectrum for Q1− 8.
‘x’ specifies the plan GraphflowDB chooses.
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Figure 3.11: Run time (secs) of GraphflowDB plan spectrum for Q11− 13.
‘x’ specifies the plan picked by GraphflowDB.

3.7.4 Adaptive WCOJ Plan Evaluation

In order to understand the benefits we get by adaptively choosing JAOs, we studied the spectrums
of WCOJ plans of Q2, Q3, Q4, Q5, and Q6, and hybrid plans for Q10 on Epinions, Amazon and
Google datasets. These are the queries in which the fixed plans of our dynamic programming
(DP) optimizer contained a chain of two or more IMJ operators so we could adapt the ordering
over the chain. The spectrum of Q10 on Epinions took a prohibitively long time to generate and
is omitted. Figure 3.12 shows the 17 spectrums we generated. In the case of Q2, Q3, and Q4,
selecting JAOs adaptively overall improves the performance of every fixed plan. For example,
the fixed plan our DP optimizer chooses for Q3 on Epinions improves by 1.2x but other plans
improve by up to 1.6x. The spectrum of Q10 for hybrid plans is similar to that of Q3 and Q4.
Each hybrid plan of Q10 computes the diamonds on the left and triangles on the right and joins
on a4. Here, we can adaptively compute the diamonds but not the triangles. Each fixed hybrid
plan improves by adapting and some improve by up to 2.1x. On Q5, the run time of most plans
remain similar but one WCOJ plan improves by 4.3x. The main benefit of adapting is that it
makes our optimizer more robust against choosing bad JAOs. Specifically, the deviation between
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Figure 3.12: Run time (secs) of adaptive plans enumerated by GraphflowDB for queries Q2− 6
and Q10. ’x’ specifies the plan picked by GraphflowDB.
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the best and worst plans are smaller in adaptive plans than fixed plans.

The only exception to these observations is Q6, where the performance of several plans gets
worse, even though the deviation between good and bad plans still became smaller. We observed
that for cliques, the overheads of adaptively choosing JAOs is higher than other queries. This
is because: (i) cost re-evaluation accesses many actual adjacency list sizes, so the overheads
are high; and (ii) the JAOs of cliques have similar behaviours, i.e., each one extends edges to
triangles, then 4-cliques, etc. , so the benefits are low.

3.7.5 EmptyHeaded Comparison

EmptyHeaded (EH) is one of the most efficient systems for conjunctive queries within graph
workloads and its plans are the closest to ours. Recall from Section 3.1 that EH has a cost-
based optimizer that chooses a generalized hypertree decomposition (GHD) with the minimum
width, i.e., chooses a GHD with the lowest AGM bound across all of its subqueries. The details
of choosing GHDs by EH are introduced by Aberger et al. [11]. Briefly, A GHD D of Q
is a decomposition of Q where each GHD node i is labelled with a subquery Qi of Q. The
interpretation of a GHD D as a join plan is as follows: each subquery is evaluated using Generic
Join first and materialized into an intermediate table. Then, starting from the leaves, each table
is joined into its parent in an arbitrary order.

This approach allows EH to often choose good decompositions. However EH: (1) does not
optimize the choice of JAOs for computing its subqueries; and (2) cannot choose plans that have
multi-way join intersections after a binary join, as such plans do not correspond to GHDs. In
particular, the JAO that EH chooses for a query Q is the lexicographic order of the attributes
used when a user issues the query in Datalog. EH’s only heuristic is that JAOs of two subqueries
that are joined start with attributes on which the join will happen. Therefore by issuing the same
query with different variables, users can make EH choose a good or a bad JAO. This shortcoming
has the advantage that by making EH choose good JAOs, we can show that our orderings also
improve EH. The important point is that EH does not optimize for JAOs. We therefore report
EH’s performance with both “bad” JAOs (EHb) and “good” JAOs (EHg). For good JAOs we use
the JAO that GraphflowDB chooses. For bad orderings, we generated the spectrum of plans in
EH (explained momentarily) and chose the worst-performing JAO for the GHD EH chooses. For
our experiments we ran Q3, Q5, Q7, Q8, Q9, Q12, and Q13 on Amazon, Google, and Epinions.
We first explain how we generated the EH spectrums and then present our results.

Subsumed EmptyHeaded Plans: We show that our plan space contains the GHD plans of Emp-
tyHeaded (EH) that satisfy the projection constraint. A GHD can easily be turned into a join plan
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T in our notation (from Section 3.4) by “expanding” each subquery Qi into a WCOJ subplan ac-
cording to the chosen JAO that EH picks for Qi and adding intermediate nodes in T that are the
results of the joins that EH performs. Given Q, EH chooses the GHD D∗ for Q as follows. First,
EH loops over each GHD D of Q, and computes the worst-case size of the subqueries, which are
the AGM bounds of these queries i.e., the minimum fractional edge covers of subqueries [24].
The maximum size of the subqueries is the width of GHD and EH chooses the GHD with the
minimum width. This effectively implies that one of these GHDs satisfy our projection con-
straint. This is because adding a relation to a query Qi while keeping the same join attributes
decreases its fractional edge cover. In graph terms, the added relation closes a cycle in the graph
pattern. To see this consider Q′

i, which contains the same set of join attributes as Qi but has some
of missing relations of Qi. Let Ei and E ′

i be the query edges associated with the graph patterns
for Qi and Q′

i, respectively. Some missing relations while keeping the same join attributes is
equivalent to missing query edges in the graph pattern with the same query vertices. Any frac-
tional edge cover for Qi is a fractional edge cover for Q′

i (by giving weight 0 to E ′
i−Ei in the

cover), so the minimum fractional edge cover of Q′
i is at most that of Qi, proving that D∗ is in

our plan space.

GraphflowDB vs EmptyHeaded Run Time Comparisons: We ran our queries on GraphflowDB
with adapting off. To compare, we ran two EH plans with good and bad JAOs for Q3, Q5, Q7,
and Q8 (recall no EH plan ran within our time limit for Q9, Q12, and Q13). We repeated the
experiments with edges in a single relation and split randomly across two relations. Table 3.9
shows our results. GraphflowDB is always faster than EHb, except for Q1 on Google and Q82 on
Amazon where the difference is only 500ms and 200ms, respectively. The run time of EH is as
high as 68x that of GraphflowDB in one instance. The most performance difference is on Q5 and
Google, for which both our system and EH use a WCOJ plan. When we force EH to choose a
good JAO, on smaller size queries EH can be more efficient than our plans. For example, although
GraphflowDB is 32x faster than EHb on Q5 Google, it is 1.2x slower than EHg. Importantly EHg

is always faster than EHb, showing that our JAOs improve run times consistently in a completely
independent system that implements WCOJs.

We next discuss Q9, which demonstrates again the benefit we get by seamlessly mixing
intersections with binary joins. Figure 3.13 shows the plan our optimizer chooses on Q9 on all
of our datasets. Our plan separately computes two triangles, joins them, and finally performs a
2-way join intersection. This execution does not correspond to the GHD plans of EH, so is not
in its plan space. Instead, EH considers two GHDs for this query and both timed out.

We verified that for every query from Figure 3.9, the plans EH chooses satisfy the projec-
tion constraint. However, there are minimum-width GHDs that do not satisfy this constraint.
For example, for Q10, EH finds two minimum-width GHDs: (i) one that joins a diamond i.e.,
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Q1 Q3 Q32 Q5 Q52 Q7 Q72 Q8 Q82 Q9 Q92 Q12 Q122Q13 Q132

Am
EHb

EHg

GF

1.0
0.6
0.6

19.0
5.4
5.5

3.4
1.3
2.1

47.1
3.3
1.9

9.2
1.5
0.8

91.4
21.2
9.5

11.6
1.7
0.9

22.2
10.6
5.1

1.8
1.4
2.0

Mm
Mm
24.7

Mm
Mm
2.4

Mm
Mm
209.2

Mm
Mm
14.8

Mm
Mm
48.0

Mm
Mm
11.3

Go
EHb

EHg

GF

1.9
1.4
2.6

444.5
12.0
14.0

42.6
2.1
4.0

401.1
11.3
5.9

77.6
2.3
2.1

1.04K
107.3
48.8

23.4
4.8
3.3

66.6
35.8
17.0

16.0
3.0
4.5

Mm
Mm
236.2

Mm
Mm
6.9

Mm
Mm
510.6

Mm
Mm
73.8

Mm
Mm
1.44K

Mm
Mm
70.1

Ep
EHb

EHg

GF

0.5
0.2
0.4

42.7
26.6
28.1

6.5
1.7
4.6

64.5
3.5
1.5

11.4
0.9
0.6

560.7
45.7
23.7

2.9
0.8
1.2

1.01K
117.2
37.5

22.0
7.0
5.4

Mm
Mm
865.3

Mm
Mm
26.1

Mm
Mm
TL

Mm
Mm
TL

Mm
Mm
95.0k

Mm
Mm
2.35k

Table 3.9: Run time (secs) of GraphflowDB (GF) and EmptyHeaded with good JAOs (EHg) and
bad JAOs (EHb). TL indicates a timeout after 48 hrs. Mm indicates running out of memory.

(a1, a2), (a2, a4), (a1, a3), (a3, a4) and a triangle i.e., (a4, a5), (a4, a6), (a5, a6) (width 2); and (ii)
one that joins a three-path i.e., (a1, a2), (a1, a3), (a3, a4) with a triangle with an extended edge
i.e., (a2, a4), (a4, a5), (a4, a6), (a5, a6) (also width 2). The first GHD satisfies the projection con-
straint, while the second one does not. EH arbitrarily chooses the first GHD. As we argued in
Section 3.4.1, satisfying the projection constraint is not a disadvantage, as it makes the plans
generate fewer intermediate tuples. For example, on a Gnutella peer-to-peer graph [112] (neither
GHD finished in a reasonable amount of time on our datasets from Table 3.7), the first GHD for
Q10 takes around 150ms, while the second one does not finish within 30 minutes.

3.7.6 Cache Trie Join (CTJ) Comparisons

Similar to Generic Join, LFTJ [179] is a WCOJ algorithm that evaluates join queries one attribute
at a time using intersections. This is all that is necessary to know about LFTJ to understand CTJ’s
approach. We explain the algorithm in detail in our related work Chapter 6. Therefore the same
optimization problem of choosing a good JAO arises when using LFTJ. An important advantage
of these algorithms is their small memory footprints. For example, when executed in a purely
pipelined fashion, LFTJ does not require memory to keep large intermediate results. Kalinsky
et al. observe that by keeping a cache of certain intermediate results and reusing these results,
LFTJ’s performance can be improved [91]. For example, consider evaluating the ‘two-triangle’
query Q8 and using the JAO (a1, a2, a3, a4, a5). Note that for each a3 value, irrespective of the
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Figure 3.13: Plan with seamless mixing of intersections and binary joins on Q9.

previous a1 and a2 values, the same a4a5 values would be matched. Therefore, if LFTJ keeps
a cache of a3 to a4a5 matches as it extends a3’s, it can save and reuse computation. CTJ is an
algorithm that extends LFTJ with caching [91]. This is a more advanced cache than our cache
within multiway intersections and in some queries gives LFTJ benefits that are similar to using
the Hash Join operator in binary or hybrid join plans. For example, consider a hybrid plan
for Q8 that uses a HJ to evaluate (a3, a4, a5) triangles on the one side, hashes these on a3, and
then probes this hash table with (a1, a2, a3) triangles. The hash table here is similar to CTJ’s
cache and reuses the computation that was done to compute (a3, a4, a5) triangles for different a3
values.

CTJ generates plans as follows. First CTJ enumerates a set of ordered tree decompositions
(TDs), which are rooted TDs, whose bags have a particular preorder [91]. The adhesion of two
parent-child bags is the number of common attributes they have. Then using a set of heuristics,
CTJ chooses one of these TDs. Specifically, CTJ chooses a TD with the minimum value for its
largest adhesions, breaking ties with maximizing the number of bags, and then minimizing the
sum of adhesions. One of these TDs is chosen arbitrarily (say TD T ). Then for T , CTJ defines:
1) a set of compatible JAOs; and 2) a caching scheme. Finally, from the compatible JAOs, one is
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{a1,a2,a3}

{a4,a2,a3}

{a2,a3}

(a) TD21 for Q2.

{a4,a2,a3}

{a1,a2,a3}

{a2,a3}

(b) TD22 for Q2.

{a1,a2,a4}

{a1,a3,a4}

{a1,a4}

(c) TD23 for Q2.

Figure 3.14: Example of CTJ’s tree decompositions (TDs) for Q2.

chosen using heuristics from another reference, Tributary Join [43]. We explain with an example.

Example:
Consider the Q2 diamond query from Figure 3.9b. For this query, there are several TDs that
CTJ can choose according to its heuristics. Three of these are shown in Figure 3.14a, 3.14b,
and 3.14c as they have the same adhesion sizes (which is minimum) and the other tie-break
metrics. Suppose CTJ chooses TD12 . A preorder traversal on TD12 orders the bags as follows:
1) {a1,a2,a3}; and 2) {a4,a2,a3}. Next, CTJ removes from each bag the query vertices in the
adhesions found in the root-to-bag path, which yields the ordering: 1) {a1,a2,a3}; and 2) {a4}.
These are the variables owned by each bag. The compatible JAOs are those that order the JAO for
each bag and concatenating these orderings from root to the leaf. Out of these, CTJ uses another
cost called Tributary Join’s [43] cost model to choose the JAO in each bag. We explain Tributary
Join momentarily. Suppose the algorithm chooses the JAO (a1, a2, a3, a4). For each non-root bag
B in TD, CTJ adds a cache to LFTJ. Suppose the parent of B is p in TD. The cache has: (i) as
key the query vertices in the adhesion of p and B; and (ii) as value the query vertices ‘owned’
by B. For example, the cache for the JAO (a1, a2, a3, a4) for TD12 will be from key:{a2,a3} to
value:a4.

The focus of CTJ and reference [91] is to control the memory consumption of LFTJ to in-
crease its performance and not on how to choose TDs or optimize the JAO selection. For ex-
ample, while CTJ can avoid storing the complete joins of subqueries, our binary join and hy-
brid plans do not have mechanisms to control for memory. In our setting we assume that the
HASHJOIN operators have enough memory to create their hash tables. Instead, our work focuses
primarily on efficient plan selection for queries. There are several important differences between
our optimized plans and the plans CTJ uses:

1. On some queries, the heuristics that CTJ uses to choose a TD cannot distinguish between
efficient TDs from inefficient ones. For example, consider the diamond query Q2 from
Figure 3.9b. CTJ’s heuristics will not be able to tie break between TD21 , TD22 , and TD23

in Figures 3.14a, 3.14b, and 3.14c, respectively and chooses one of these arbitrarily, which
yield different JAOs (and caching schemes). In fact, in the code provided by the authors, we
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noticed that similar to EH, we can make CTJ choose different TDs and final JAOs, with very
different runtimes. For instance, TD21 and TD22 on Google lead to run times 86.6 seconds
and 806.2 seconds, respectively. The difference in run time is mainly due to a difference
in the number of intermediate results, which are 72.94M for TD21 and 1.38B for TD22 . Yet
CTJ’s optimizer does not differentiate between these two TDs and their final JAOs. Instead,
our i-cost-based model can differentiate between these JAOs.

2. Once a TD has been chosen, CTJ uses the Tributary Join technique to choose a JAO within
each bag[43]. Tributary Join studies choosing the JAO for LFTJ algorithm in the context
of joining multiple relational tables and chooses the JAO based on the distinct values in the
attributes of the relations. This heuristic however is not designed for self-join queries as in
graph workloads, where attributes will have the same number of distinct values, specifically
|V | (assuming every vertex in an input graph has an incoming and outgoing edge). Recall
that in conjunctive queries in graph workloads, each binary E(ai,aj) relation is a replica
of the edges of the input graph G(V,E). Note that in our evaluations we either use a single
edge relation or split the edges into multiple relations, but any differences in the distinct
values across when splitting would be due to random assignment.

3. On some queries CTJ’s plans do not benefit from caching results of subqueries larger than
a single query edge, due to the heuristics CTJ uses to choose TDs. For example, for a path
query, say Q13, CTJ considers TD’s in which each bag consists of a single query edge. Since
CTJ caches the results of a single bag, only results of a single query edge, so adjacency lists
can be cached. This contrasts with traditional binary join plans that can cache subqueries
within bushy plans.

We compared GraphflowDB to CTJ on queries Q1 to Q14 on Amazon, Google, and Epin-
ions. We obtained the code from the authors of CTJ [91]. Recall that CTJ’s main focus is in
controlling the cache size. We observed that we obtain the best runtime numbers when we run
CTJ with an unbounded cache size, which implies that CTJ caches every key-value between each
bag. Table 3.10 shows our results. As we explained above, CTJ can choose between multiple
different TDs and JAOs depending on how the query is written. In Table 3.10, we report the best
run time for CTJ for each query after writing the attributes of the query in every lexicographic
order. As shown in the table, GraphflowDB outperforms the implementation we obtained for
CTJ across these queries, varying from competitive performances to differences that are two or-
ders of magnitude in runtime. We note that it is not possible to do a very controlled comparison
here because the implementations of GraphflowDB plans and CTJ are very different, e.g., the
implementations use different programming languages and data organization. However, the dif-
ferences we discussed above contribute to these runtime differences. For example, the plan that
CTJ uses for Q13, which is a path query and where CTJ does not benefit from caching, gener-
ates 3.43B intermediate tuples on Amazon. In contrast, GraphflowDB’s plan hashes on a4 and
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Q1 Q2 Q3 Q4 Q5 Q6 Q7

Am
CTJ
GF

5.1
0.6
(8.5x)

38.9
4.7
(8.3x)

41.5
5.5
(7.6x)

22.6
2.0
(11.3x)

21.0
1.9
(11.1x)

18.6
3.3
(5.6x)

61.1
9.5
(6.4x)

Go
CTJ
GF

15.3
2.6
(5.9x)

82.7
12.3
(6.7x)

86.6
12.0
(7.2x)

59.4
4.9
(12.1x)

55.7
5.9
(9.4x)

64.0
8.6
(7.4x)

464.1
48.8
(9.5x)

Ep
CTJ
GF

2.3
0.4
(5.8x)

88.4
31.5
(2.8x)

94.7
26.6
(3.6x)

10.5
1.5
(7.2x)

9.5
1.5
(6.3x)

27.5
3.3
(8.3x)

329.2
23.7
(13.9x)

Q8 Q9 Q10 Q11 Q12 Q13 Q14

Am
CTJ
GF

94.8
5.1
(18.6x)

142.1
56.3
(2.5x)

2256.5
20.8
(108.5x)

184.2
6.8
(27.1x)

878.5
209.2
(4.2x)

456.0
48.0
(9.5x)

639.6
125.0
(5.12x)

Go
CTJ
GF

606.3
17.0
(35.7x)

574.4
303.9
(1.9x)

94084.1
135.9
(692.3x)

8055.1
214.6
(37.5x)

3048.5
510.6
(6.0x)

2165.4
1440.0
(1.5x)

67049.9
5348.7
(1.5x)

EP
CTJ
GF

3251.1
37.5
(86.7x)

1618.8
(1.5x)
2384.8

158274.2
1908.7
(82.9x)

TL
12852.5

TL
TL

145K
95027.4
(1.5x)

95027.4
3373.1
(13.0)

Table 3.10: Run time (secs) of GraphflowDB (GF) and CTJ.
TL indicates the query did not finish in 48 hrs.

generates only 0.39B intermediate tuples.

3.7.7 CFL Comparison

CFL [29] is one of the state-of-the-art subgraph matching algorithms. Subgraph matching is
equivalent to conjunctive queries in graph workloads. The main optimization of CFL is “post-
poning Cartesian products”. There are conditionally independent parts of the query that can be
matched separately and appear as Cartesian products in the output. CFL decomposes a query into
a dense core and a forest. Broadly, the algorithm first matches the core, where fewer matches are
expected and there is less chance of independence between the parts. Then the forest is matched.
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|T| Q10s Q15s Q20s Q10d Q15d Q20d

105
GF
CFL

7.3
9.3
(1.2x)

6.0
17.5
(2.9x)

5.5
40.5
(7.3x)

29.2
13.2
(0.4x)

99.8
389.9
(3.9x)

142.0
1,140.7
(8.0x)

108
GF
CFL

625.6
4,818.9
(7.7x)

665.5
5,898.1
(8.8x)

797.2
7,104.1
(8.9x)

1,159.6
7,974.3
(6.8x)

1,906.2
11,656.2
(6.1x)

1,556.9
19,135.7
(12.2x)

Table 3.11: Average run time (secs) of GraphflowDB (GF) and CFL on large queries. Qi(s/d) is
a query set of 100 randomly generated queries where i is the number of query vertices in the

graph pattern and s and d specify sparse and dense queries, respectively.

In both parts, any detected Cartesian products are postponed and evaluated independently. This
reduces the number of intermediate results the algorithm generates.2

CFL also builds an index called CPI, which is used to quickly enumerate matches of paths
in the query during evaluation. We follow CFL’s prior experimental setting [29]. We obtained
the CFL code and 6 different query sets from the authors [29]. Each query set contains 100
randomly generated queries that are either sparse (average query vertex degree ≤ 3) or dense
(average query vertex degree > 3). We used three sparse query sets Q10s, Q15s, and Q20s
containing queries with 10, 15, and 20 query vertices, respectively. Similarly, we used three
dense query sets Q10d, Q15d, and Q20d. To be close to CFL’s setup, we use the human dataset
from their original experimental setup. The dataset contains 86282 edges, 4674 vertices, with
edges split into 44 distinct relations. Table 3.11 compares the run time of GraphflowDB and
CFL. We report the average run time per query for each query set when we limit the output to
105 and 108 matches. Except for one of our experiments, on Q10d with 105 output size limit,
GraphflowDB’s run times are faster (between 1.2x to 12.2x) than CFL. We note that although our
run time results are faster than CFL on average, readers should not interpret these results as one
approach being superior to another. For example, postponing of Cartesian products optimization
and a CPI index can improve our approach. However, one major advantage of our approach
is that we do flat tuple-based processing using standard operators, so our techniques can easily
be integrated into existing DBMSs. It is less clear how to decompose CFL-like processing into
database operators.

2CFL, as a “graph matching” algorithm does not describe its computation as relational joins.
The theory of factorization, covered in Chapters 4 and 5, capture the similar observation in a
formal way to show how one can exploit such Cartesian products when performing joins.
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Figure 3.15: Scalability experiments.

3.7.8 Scalability Experiments

We next demonstrate the scalability of GraphflowDB on larger datasets and across a larger num-
ber of physical cores. The goal of our experiments is to demonstrate that when more cores are
available, our approach can utilize them efficiently. We evaluated Q1 on LiveJournal and Twitter
graphs, Q2 on LiveJournal, and Q14, which is a very difficult 7-clique query, on Google. We
repeated each query with 1, 2, 4, 8, 16, and 32 cores, except we use 8, 16, and 32 cores on the
Twitter graph. Figure 3.15 shows our results. Our plans scale linearly until 16 cores with a slight
slow down when moving 32 cores which is the maximum number of cores in our hardware. For
example, going from 1 core to 16 cores, our run time is reduced by 13x for Q1 on LiveJournal,
16x for Q2 on LiveJournal and 12.3x for Q14 on Google.

3.7.9 Catalogue Experiments

We present preliminary experiments to show two tradeoffs: (1) the space vs estimation quality
tradeoff that parameter h determines; and (2) construction time vs estimation quality tradeoff
that parameter z determines. For estimation quality we evaluate cardinality estimation and omit
the estimation of adjacency list sizes, i.e., the |A| column, that we use in our i-cost estimates. We
first generated all 5-vertex size unlabeled queries. This gives us 535 queries. For each query, we
assign labels at random given the number of labels in the dataset (we consider Amazon with 1
label, Google with 3 labels). Then for each dataset, we construct two sets of catalogues: (1) we
fix z to 1000, and construct a catalogue with h = 2, h = 3, and h = 4 and record the number of
entries in the catalogue; (2) we fix h to 3 and construct a catalogue with z = 100, z = 500, z =
1000, and z = 5000 and record the construction time. Then, for each labeled query Q, we first
compute its actual cardinality, |Qtrue|, and record the estimated cardinality of Q, Qest for each
catalogue we constructed. Using these estimation we record the q-error of the estimation, which
is max(|Qest| / |Qtrue|, |Qtrue| / |Qest|). This is an error metric used in prior cardinality estimation
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z CT ≤2 ≤3 ≤3 ≤5 ≤10 >20

Am

100
500
1,000
5,000

0.1
0.3
0.5
1.5

318
384
383
384

445
486
481
475

510
520
519
518

526
527
529
529

529
530
532
532

535
535
535
535

Go3

100
500
1,000
5,000

3.1
9.3
17.0
66.1

166
214
222
219

276
310
315
322

356
371
371
373

415
430
430
432

461
477
475
473

535
535
535
535

Table 3.12: Q-error and catalogue creation time (CT) in secs
for GraphflowDB for different z values.

h |R| ≤2 ≤3 ≤3 ≤5 ≤10 >20

Am GF
2
3
4

8
138
2858

348
381
498

464
482
510

512
512
518

523
524
524

527
527
527

535
535
535

PG - - 15 15 23 23 25 535

Go3 GF
2
3
4

144
20.3K
11.9M

181
222
441

289
315
497

375
371
515

447
430
524

492
475
529

535
535
535

PG - - 0 0 0 0 0 535

Table 3.13: Postgres and GraphflowDB Q-error and
number of catalogue entries (|R|) for GF for different h values.

work [110] that is at least 1, where 1 indicates completely accurate estimation. As a very basic
baseline, we also compared our catalogues to the cardinality estimator of PostgreSQL. For each
dataset, we created an Edge relation E(from, to). We create two composite indexes on the table
on (from, to) and (to, from) which are equivalent to our forward and backward adjacency lists.
We collected stats on each table through the ANALYZE command. We obtain PostgreSQL’s
estimate by writing each query in an equivalent SQL select-join query and running EXPLAIN
on the SQL query.

Our results are shown in Tables 3.12 and 3.13 as cumulative distributions as follows: for
different q-error bounds τ , we show the number of queries that a particular catalogue estimated
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with q-error at most τ . As expected, larger h and larger z values lead to less q-error, while
respectively yielding larger catalogue sizes and longer construction times. The biggest q-error
differences are obtained when moving from h = 3 to h = 4 and z = 100 to z = 500. There are a
few exception τ values when the larger h or z values lead to very minor decreases in the number
of queries within the τ bound but the trend holds broadly.
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Chapter 4

Factorized Vector Execution

GraphflowDB’s execution engine for our hybrid plans that seamlessly mix worst-case optimal
joins (WCOJs) and binary joins is a push-based tuple-at-a-time engine. This execution engine
has two shortcomings. First, the tuple-at-a-time approach, which follows the Volcano execution
model, works well when disk is the primary bottleneck but incurs a high cost for in-memory
DBMSs like GraphflowDB. However, Volcano execution model has a high ‘interpretation cost’.
This is the cost of the high number of virtual function calls incurred throughout the execution of
a pipeline. Furthermore, the model is not efficient on modern CPUs. Two broad approaches are
known when it comes to improving on the Volcano model: i) Code generation execution model:
pioneered by HyPer [128]; and ii) Vectorized execution model: pioneered by Vectorwise [194].
We focus on moving GraphflowDB towards a vectorized execution engine as it is easier to man-
age from the perspective of code complexity. Within this model, instead of passing a single tuple,
we pass a block of tuples in the form of vectors on which primitive operations run. This would
reduce the ‘interpretation cost’.1

Second, GraphflowDB’s executor so far represents intermediate relations that are generated
using flat tuples. The theory of factorization [145] has shown that it is possible to compress
intermediate results using factorized representations. To motivate this shortcoming, consider the
2-hop query Q2H = R(a, b), R(a, c) as a running example and the input graph shown in Fig-
ure 4.1. The GraphflowDB executor described in Chapter 3 so far would generate, in a pipelined
manner, the flat representation shown in Figure 4.1b that contains 2n2 many tuples. However, this
relation is highly compressible if for each b = v1, we “factor out” the set of incoming neighbors

1Note that vectorization refers to the block of tuples being a set of vectors of data and does
not directly relate to the use of vectorized/SIMD instructions.
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of v1 and outgoing neighbors of v1 (and similarly for b = v2). So in an alternative representation
we could represent the same set of n2 many tuples as

Q2H:Gf1
= (<a:v1> × ∪i=2n

i=1 <b:xi> × ∪i=2n
i=1 <c:xi>) ∪

(<a:v2> × ∪i=2n
i=1 <b:yi> × ∪i=2n

i=1 <c:yi>)

using 2 tuples and 8n+ 2 values.

x1

x2

x3

. . .

xn

v1 xn+3

. . .

x2n

xn+2

xn+1

y3 v2

y2

y1

. . .

yn

yn+3

yn+2

yn+1

. . .

y2n

(a) Example input graph G.

R(a, b), R(a, c)

a1 a2 a3
v1 x1 x1
...

...
... Neighbours(v1)

v1 x1 x2n
...

...
...

v1 x2n x1
...

...
... Neighbours(v1)

v1 x2n x2n
v2 y1 y1
...

...
... Neighbours(v2)

v2 y1 y2n
...

...
...

v2 y2n y1
...

...
... Neighbours(v2)

v2 y2n y2n

(b) Flat Representation for Q2H:G.

Figure 4.1: Example input graph G and flat representation of Q2H=R(a, b), R(a, c) on G.

Factorized representations can be strictly smaller than the AGM bound of queries, i.e., can
lead to plans generating smaller intermediate results than our hybrid plans. Choosing a good
factorization can be done statically at compilation time by inspecting the dependencies between
the query’s attributes. Adopting factorized representations however is not straightforward as
general factorized representations are represented as tries and make primitive operations deviate
heavily from those operating on traditional flat tuple representations that vectorized execution
engines rely on.

The goal of this chapter is to develop a vectorized query processes that also adopts factoriza-
tion representations. These two techniques are at odds because processing arbitrary factorized
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representations seems to indeed require adopting tries as intermediate relations as shown by prior
work [26]. We find a novel design by which we obtain the full benefit of a vectorized execution
model and some of the benefits of factorization by restricting the set of factorization schemes
possible. We call our approach Factorized Vector Execution. We cover the necessary changes to
the intermediate tuple representation as well as changes to the physical operators of our hybrid
plans. Our approach is easy to adopt by modern analytical DBMSs.

Next, we give an overview of traditional vector execution and existing approaches to adopting
factorized representation as well as our contributions.

4.1 Existing Approaches and Overview of Contributions

Analytical DBMSs such as MonetDB [34], DuckDB [152], and VectorWise [194] use a vector-
ized query execution model. Within this model, vectors store a subset of the tuples of interme-
diate relations. Each vector stores values of the same attribute and hence of the same datatype.
Furthermore, a vector has a predefined maximum size, usually 1024. The vectors are passed be-
tween operators in contrast to prior tuple-at-a-time execution models such as Volcano leading to
a reduction in the cost of interpretation. In all of these systems, many of the primitive operations
are done in tight-loops reducing the overhead of traditional Volcano-style execution.

The general query processor design of these systems however would not seem to be suitable
for adopting factorized representations that require processing tries. The FDB system is the
first and only proposed factorized query processor [26]. The query processor of FDB adopts
representations called f-representations and is based on operators that perform transformations
over entire tries. Specifically, FDB indexes all input relations as tries and its plans consist of
a linear sequence of operators that take as input tries and output and materialize tries, starting
with tries that represent the input relations. This approach would be hard to adopt as it deviates
significantly from vectorized execution model, which processes sets of flat values in a pipelined
manner.

4.1.1 Thesis Contributions

Our primary contribution is the design and implementation of vectorized query processor that
adopts a limited form of f-representations that are particularly suitable for the type of queries
GraphflowDB optimizes for, i.e., conjunctive queries in graph workloads. Our design modifies
traditional vectorized executors in two ways: (i) Instead of representing the intermediate tuples
processed by operators as a single group of equal-sized vectors, we represent them as multiple
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factorized groups of vector. We call these vector groups. This allows us to avoid or delay
Cartesian products in the intermediate results, keeping them in compressed form. (ii) Instead of
using a single group of fixed-length vectors, we use multiple variable-length vectors that take
the lengths of adjacency lists that are represented in the intermediate tuples due to the nature of
m-n joins in our queries. Because GraphflowDB stores adjacency lists in memory consecutively,
this allows us to simply ‘point’ to the list and avoid materializing adjacency lists during join
processing, further improving query performance.

We present extensive experiments that demonstrate the scalability and performance benefits
of factorized vector execution model both on microbenchmarks and end-to-end benchmarks. The
code, queries, and datasets related to the contents of this chapter available on Github.2.

4.2 Preliminaries

In this section, we give an overview of a type of factorized representations called f-representations.
We also cover the extensions we have made to the storage layer of GraphflowDB from Chapter 3.
The storage layer of GraphflowDB in the Chapter 3 did not store node and edge table attributes.
The storage layer is extended in this chapter to allow us to expand the queries we can support to
those with multi-way joins containing simple and complex predicates on node and relationship
attributes.

4.2.1 Factorized Representations

Factorized representations (f-representations) are a succinct and lossless representation for re-
lations introduced by Olteanu et al. [145]. The outline of this section is as follows. First,
we introduce f-representations and contrast them with flat representations, the common repre-
sentation used by traditional DBMSs. Second, we also introduce factorized trees (f-trees), a
formalism to describe the structure of an f-representation. Finally, we introduce the size bounds
of f-representations on query results.

To introduce f-representations, we use the 2-hop query Q2H = R(a, b), R(a, c) as a running
example. DBMSs use flat representations for relations. Figure 4.1 shows an example input graph
G(V,E) and the corresponding flat representation of the output of Q2H on G, which we denote
as Q2H:G. The flat representation Q2H:G can be seen as an algebraic expression of a union over
the product of unary <a>, <b>, and <c> values as follows:

2github.com/queryproc/columnar-storage-and-list-based-processing-for-graph-dbms
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Q2H:G = (<a:v1> × <b:x1> × <c:x1>) ∪
. . .

(<a:v1> × <b:x1> × <c:x2n>) ∪
. . .

(<a:v2> × <b:y1> × <c:y1>) ∪
. . .

(<a:v2> × <b:y2n> × <c:y2n>)

Let the size of a representation be the number of unary values it contains. For example, the size
of the flat representation of Q2H:G from Figure 4.1b is 24×n2 because the representation is a
union over (2n)2 tuples of size 3 (n2 tuples have a:v1, and another n2 tuples have a:v1). Notice
that the flat representation contains a lot of repetition shown in boxes in Figure 4.1b denoted by
Neighbours(vi). F-representations are compressed representations of relations that factor out
such repetitions. A possible f-representation for Q2H:G is as follows (shown in Figure 4.2b):

Q2H:Gf1
= (<a:v1> × ∪i=2n

i=1 <b:xi> × ∪i=2n
i=1 <c:xi>) ∪

(<a:v2> × ∪i=2n
i=1 <b:yi> × ∪i=2n

i=1 <c:yi>)

Observe that the size of the f-representation above is 8n+ 2.

Given an arbitrary relation R(a, b, ...), finding the most compact F-representation of R is
NP-hard. However, if R is the result of a query, then the tuples in R might have attribute-
level conditional independences, i.e., , multi-valued dependencies [56], which can be exploited
to obtain compact f-representations. For example, in Q2H for any fixed value of a, we can infer
from the query that the sets of b and c values are independent. In other words, attributes b and c in
the query results are independent conditioned on a, which is how the f-representation above was
obtained. This conditional independence is described using factorized trees, which we introduce
next.
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(a) T1.

∪a
v1

×

∪b
x1 ... x2n

∪c
x1 ... x2n

v2

×

∪b
y1 ... y2n

∪c
y1 ... y2n

(b) F-representation Q2H following T1.

b

a

c

(c) T2.

∪b

x1

×

∪a
v1

×

∪c
x1 ... x2n

... xn

×

∪a
v1

×

∪c
x1 ... x2n

... x2n

×

∪a
v1

×

∪c
x1 ... x2n

y1

×

∪a
v2

×

∪c
y1 ... y2n

... yn

×

∪a
v2

×

∪c

y1 ... y2n

... y2n

×

∪a
v2

×

∪c
y1 ... y2n

(d) F-representation Q2H following T2.

Figure 4.2: F-representations for Q2H following F-trees T1 and T2.

4.2.1.1 Factorized Trees

F-trees are a formalism to describe conditional dependencies between attributes of a relation
R. An f-tree T can be used to describe the structure of an f-representation. As such, an f-
representation of R follows the structure of T . More broadly, an f-tree T is a rooted tree such
that each node ni of T is labelled by an attribute vi ∈ V . The union of all vertices labelling the
nodes in T is V . The shape of T provides a hierarchy of attributes by which we group the tuples
of the represented relation: we group the tuples by the values of the attributes labelling the root,
factor out the common values, and then continue recursively on each group using the attributes
lower in the f-tree. For instance, the f-representation in Figure 4.2b is described by the f-tree
T1 in Figure 4.2a. At each node in T1 except the root, a list of attribute dependencies on the
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ancestors is shown in brackets. T1 points to a grouping on a, i.e., we group separately the sets of
values of b and c for each a value. In general, an f-tree over attributes A(a, b, ...) cannot factorize
an arbitrary relation R over A. However, for relations that are results of a join query Q(V,E),
from the shape of Q, we can find f-trees that will factorize the outputs of Q. This is done by
analyzing the dependencies between the attributes in Q. We introduce the notion of dependency
in graph terms focusing on our context of conjunctive queries in graph workloads. A general
definition for general queries are given in reference [145].

Definition 4.2.1 (Attribute dependency) Two attributes ai and aj are dependent if ai→aj ∈ Q
or aj→ai ∈ Q. If there are no projections in the query, this is the only constraint. If there are
projections in the output of the conjunctive query, then two ai and aj are also dependent if there
is a path in the query that start with ai and end with aj , such that every attribute in the path is
projected out, i.e., , not in the projection list of the query.

Olteanu et al. [145] has shown that any f-tree that satisfies the following path constraint is an
f-tree correctly factorizing the results of Q:

Definition 4.2.2 (Path constraint) Given a query Q and an f-tree T , T satisfies the path con-
straint if any two dependent attributes are on the same root-to-leaf path.

For Q2H , figures 4.2a and 4.2c show two f-trees, T1 and T2, that correctly factorizes Q2H .
Figures 4.2b and 4.2d show the corresponding f-representations when factorizing Q2H using T1
and T2, respectively. Readers can verify that both f-trees satisfy the path constraint. As demon-
strated in this simple example, a query results may be factorized under different f-trees, resulting
in different sizes. In our example, T1 leads to a significantly more compact F-representation than
T2. Observe also that T2 is effectively a flat representation and requires the same size as a flat
representation.

4.2.1.2 Worst-case Size Bounds for F-representations

The AGM bound of a query Q over a database D, is denoted by |D|ρ∗(Q), where |D|ρ∗(Q) is the
worst-case i.e., maximum output size for a given query on any database instance. |D|ρ∗(Q) would
be the worst-case size of the query results for flat representations. Olteanu et al. [145] define
|D|s(Q) as the minimal worst-case output sizes for f-representations.

Definition 4.2.3 F-representation minimal worst-case output sizes - Given Q, all f-trees of Q,
|D|s(Q) is the size of the f-representation following f-tree T*, which is the one describing the
f-representation with the lowest maximum output size across all database instances.

60



We note that |D|ρ∗(Q) is the size of f-representations following f-trees that are paths in which
each node has at most a single child. Furthermore, s(Q) is usually smaller than ρ∗(Q) such that
s(Q) ≤ ρ∗(Q). We show this for the 2-hop query Q2H = R(a, b), R(b, c) as an example for
possible input edge relations of size N . The AGM bound of Q2H is N2 hence ρ∗(Q2H) = 2.
Meanwhile the worst-case output size of the f-representations described by the f-trees T1 and T2
in Figures 4.2a and 4.2c are Θ(N) and Θ(N2), respectively. T1 and T2 are representative of all
f-trees of Q2H and therefore s(Q2H) = 1. To summarize, for Q2H , ρ∗(Q) = 2 and s(Q) = 1. As
such, f-trees for the 2-hop query lead to representations with sizes of either N and N2.

4.2.2 GraphflowDB Storage

GraphflowDB follows a columnar storage for its properties. The node/entity attributes are stored
as in-memory columns while the edges/relationships and their attributes are stored in a com-
pressed CSR structure that represents adjacency lists. These are indexed in the forward and
backward direction. The details are covered by the work of Pranjal et al. [75]. We use what
is referred to in the design as single-directional property pages which avoid duplicating proper-
ties on both edge directions. It achieves good locality when reading properties of edges in one
direction and still guarantees random access in the other.

4.3 Mixing Factorization and Vectorized Execution

We next motivate factorized vector execution by discussing limitations of traditional Volcano-
style tuple-at-a-time processors and existing vector-based processors of columnar RDBMSs
when processing m-n joins. Consider the following query:
QFFP (a, b, c, d) = P (a, age,−), F (a, b), F (b, c), P (c,−, d), age > 50, where F and P are the
Follows(follower, followee) and Person(ID, age, lives at) relations, respectively. Assume
that Follows is an m-n relationship while lives at is an n-1 relationship.

Consider a simple plan for this query shown in Figure 4.3, which is a left-deep plan with
JAO (a, b, c, d) made of Scan, Filter, and INLJ operators. Volcano-style tuple-at-a-time
processing [68], which some GDBMSs adopt [117, 126], is efficient in terms of how much data
is copied to the intermediate tuple. Suppose the scan matches a to a1 and a1 extends to k1
many b’s, b1 ... bk1 , and each bi extends to k2 many c’s. For now we ignore the d extension.
This generates k1 × k2 tuples. Depending on the implementation, the number of times values
are copied can be optimized, e.g., , the Volcano-style GraphflowDB processor from Chapter 3
would copy a1 values only once, and then each of the b values once, and each of the c values
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Scan P (a, age,−)

Filter age > 50

INLJa F (a, b)

INLJa F (b, c)

COLJc P (c,−, d)

Accumulator

Figure 4.3: Left-deep plan example for QFFP .

k2 times. However, the number of function calls to operators to process these tuples would be
commensurate with k1 × k2. For this reason, Volcano-style processors are known to achieve low
CPU utilization as well as low cache utilization as processing is intermixed with many function
calls. These shortcomings especially surface in Volcano-style processors when processing m-n
joins.

Column-oriented RDBMSs instead adopt vector-based processors [33, 83], which process an
entire block of vectors at a time in operators. Block sizes are fixed length, e.g., 1024 tuples.
While processing a block of vectors, operators read consecutive memory locations, achieving
good cache locality, and perform computations inside loops over vectors which is efficient on
modern CPUs. However, traditional vector-based processors have two shortcomings for graph
workloads: (1) For m-n joins, vector-based processing requires often high memory-to-memory
data copies. Suppose for simplicity a block size of k2 and k1 < k2. In our example, the scan
would output a vector a : [a1], the first join would output a : [a1, ..., a1], b : [b1, ..., bk1 ] vectors,
and the second join would output a : [a1, ..., a1], b : [b1, ..., b1], c : [c1, ..., ck2 ] vectors, where
for example the value a1 gets copied k2 times into intermediate vectors3 . (2) Traditional vector-
based processors do not exploit the list-based data organization of adjacency lists. Specifically,
adjacency lists that are used as join indexes by operators are already stored consecutively in
memory, which can be exploited to avoid materializing and copying these lists into vectors.

We developed a new vectorized execution model we call factorized vector execution, which
we next describe. We use factorized representation of intermediate tuples [145] to address the
data copying problem and uses vectors with sizes set to the lengths of adjacency lists in the
database up to a maximum, to exploit the list-based data storage in GraphflowDB.

3In some systems, such as DuckDB [152], instead of the a1 value, some offset values into
some other vector could be repeated.
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4.3.1 Intermediate Tuple Set Representation

Traditional vectorized executors represent intermediate data as a set of flat tuples in a single group
of multiple vectors. In our example within the first three extensions, we had three variables a, b,
and c corresponding to three vectors. The values at position i of all vectors form a single tuple.
Therefore to represent the tuples that are produced by m-n joins, repetitions of values are neces-
sary. To address these repetitions we adopt a factorized tuple set representation scheme [145].
Instead of flat tuples, factorized representation systems represent tuples as unions of Cartesian
products. For example, the k2 flat tuples [(a1, b1, c1)∪ (a1, b1, c2)∪ ...∪ (a1, b1, ck2)] from above
can be represented more succinctly in a factorized form as: [(a1)× (b1)× (c1 ∪ ... ∪ ck2)].

To adopt factorization in a vectorized executor, we instead use multiple groups of vectors,
which we call vector groups, to represent intermediate data. Each vector group has a pos field
making it in one of two states:
• Flat: If pos ≥ 0, the vector group is flattened and represents a single tuple that consists of

the pos’th values in the vectors.
• Unflat: If pos = -1, the vector groups represent a list of tuples with as many as the size of

element in each vector as vectors within the same group have the same size.
We call the union of vector groups an intermediate chunk, which represents a set of intermediate
tuples as the Cartesian product of each tuple that each vector group represents.

In addition, we are align to the lengths of the vectors to those of the adjacency lists in the
database. As we shortly explain when introducing the changes to our operators, this allows us to
avoid materializing adjacency lists and copy them into the vectors.

Example:

Figure 4.4a shows an intermediate chunk, that consists of three vector groups. The first two
groups are flattened and the last is unflat. In its current state, the intermediate chunk represents
k2 intermediate tuples of Q as: (a1, 51)×(b2)×((c1, d1)∪ ...∪(ck2, dk2)). The equivalent logical
intermediate relation stored in the intermediate tuples is shown in Figure 4.4b.

4.3.2 Execution Engines and Operators

We next give a description of the main relational operator changes to process intermediate chunks
in a our factorized vector execution.

Scan: Scans are the same as before and read a fixed size of IDs; 1024 by default. IDs are added
into a vector within a new vector. Since we read consecutive IDs in a fixed size chunks, we
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(a) Example of an intermediate chunk for QFFP .

a age b c d

a1 51 b2 c1 d1

a1 51 b2 c2 d2

... ... ... ... ...
a1 51 b2 ck2 dk2

(b) Equivalent logical intermediate relation stored in the intermediate chunk.

Figure 4.4: Example of intermediate chunk and its equivalent logical relation for QFFP . The
first two vector groups are flattened to single tuples, while the last represents k2 many tuples.

use a special vector group implementation that also contains a startOffset value. When the
operator starts executing, initially it pushes a vector with startOffset set to 0 and size set
to 1024, then it pushes the same vector with startOffset set to 1024 and so on and so forth.
This leads to avoiding a lot of unnecessary memory writes within the vector. Any other attributes
of interest are scanned and added as separate vectors to the same vector group.

INLJ /IMJ : are used to perform joins from a node, say, a to nodes b over 1-n or m-n edges e.
The input vector group V Ga that holds the vector of a values can be flat or unflat. If V Ga is
not flat, INLJ /IMJ first flattens it, i.e., sets the pos field of the vector group to 0. It then loops
through each a value, say, aℓ, and extends it to the set of b and e values using aℓ’s adjacency
list Adjaℓ . The vectors holding b and e values are put in a new vector group, V Gb. This allows
factoring out a vector of b and e values for a single a value. The lengths of all vectors in V Gb,
including those storing b and e as well as vectors that may be added later, will be equal to the
length of Adjaℓ . In addition, we exploit that Adjaℓ already stores b and e values as vectors, and
do not copy these to the intermediate chunk. Instead, the b and e vectors simply point to Adjaℓ .

Column Join (COLJ): is used to perform 1-1 or n-1 joins. Suppose now that each a can extend
to at most one b nodes. COLJ expects a vector of unflat a values, though they can be flat due to
prior operators. That is, it expects V Ga to be unflat and adds a new vector into V Ga to store b.
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The vector is the same length as a’s vector (so unlike COLJ does not create a new vector group).
Inside a for loop, COLJ copies the matching b of each a to a vector. Note that because each a
value has a single b value, these values do not need to be factored out.

Hash Join (HJ): Our HJ stores in its Hash Table all of the values from flattened vector
groups similar to how tuples were stored in a regular Hash Table implementation. Further-
more, it stores lists as if they were variable-length data types instead of flattening them. When
probing, all flattened values are added to the same group with a single tuple and all lists are stored
in different vector groups, i.e., we keep the factorized representation across

Filter: We require a more complex filter operator than those in traditional vector-based pro-
cessors. In particular, in traditional vector-based processors, binary expressions, such as a com-
parison expression, can always assume that their inputs are two vectors of values. Instead, now
binary expressions need to operate on three possible value combinations: two flat, two lists or
one list and one flat, because any of the two vectors can now be in a flattened vector group. The
filter adds a selection array containing the position of the elements that passed the filter such as
the one in the first vector group in Figure 4.4a.

Group By And Aggregate: Briefly, similar to Filter, Group By And Aggregate
needs to consider whether the values it should group by or aggregate are flat or not, and performs
a group by and aggregation on possibly multiple factorized tuples. Factorization allows us to
sometimes perform fast group by and aggregations, similar to prior techniques that compute ag-
gregations on compressed data [9, 176]. For example, count(*) simply multiplies the sizes of
each vector group to compute the number of tuples represented by each intermediate chunk it
receives.

Example:

Continuing our example, the three vector groups in Figure 4.4 are an example intermediate chunk
output by the COLJ operator in the plan from Figure 4.3. In this, the initial Scan and Filter
have filled the 1024-size a and age vectors in V G1. The first INLJ has: (i) flattened V G1 to
tuple (a1, 51); and (ii) filled a vector of k1 b values in a new vector group V G2. The second INLJ
has (i) flattened V G2 and iterated over it once, so its pos field is 1, and V G2 now represents
the tuple (b2); and (ii) has filled a vector of k2 c values in a new vector group V G3. Finally, the
last COLJ fills a vector of k2 d values, also in V G3, by extending each cj value to one dj value
through the join with Person to obtain the d: lives at attributes.
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(a) Input graph with follows and lives at edges.
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... ... ... ...
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... ... ... ...
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(b) Output as a table of Q2P C .

Figure 4.5: Input dataset and output example of QFFP2.

4.3.3 Benefits and Limitations

We show the benefits and limitations of our approach with an example. Consider the input data in
Figure 4.5a and the following query: QPFFP (a, b, c, d) = P (b,−, k),F (a, b),F (b, c), P (c,−, d),
where F and P are the Follows(follower, followee) and Person(ID, age, lives at) relations,
respectively. We consider the left deep plan with JAO (b, a, c, d) evaluating QPFFP shown in
Figure 4.6. The plan contains Scan, INLJ, and COLJ operators.

The output has three vector groups in Figure 4.7a are an example intermediate chunk output
by the COLJ operator in the plan from Figure 4.6. In this example, we showcase the internals
of the vector implementations. * refers to a pointer to an array instead of a copy. In this, the
initial Scan have filled the 1024-size b and k vectors in V G1. The first INLJ has: (i) flattened
V G1 to tuple (n,OTW ); and (ii) filled a vector of n a values in a new vector group V G2. The
second INLJ (i) gets a flat V G1 and filled a vector of n c values in a new vector group. Finally,
the last COLJ fills a vector of n d values, also in V G3, by extending each cj value to one dj
value through the join with Person to obtain the d: lives at attributes. Note that the Cartesian
product of these tuples would produce n2 tuples meanwhile the intermediate chunk stores it as
2n+ 1 fields. Note that the intermediate chunk if stored within a Hash Table would be stored
as shown in the Figure 4.7b.

The benefits of factorized vector execution are: a) completely avoiding the enumeration of
intermediate results when plans have heavy projections and aggregations; b) even when results
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Scan P (b,−, k)

INLJb F (a, b)

INLJb F (b, c)

COLJc P (c,−, d)

Results
Accumulator

Figure 4.6: Left-deep plan example for QFFP2.

(a) Example of vector groups changing as they evaluate QPFFP .

(b) Example of Hash Table storing the intermediate chunk.

Figure 4.7: Example of Intermediate Chunk for Q2P C .

are enumerated at the end with no asymptotic difference on the output size, redundant computa-
tion is avoided. An example is the final join with P (c,, d) in QFFP2. The join would have been
evaluated n times if we apply the Cartesian product of traditional systems to the a vector turning
it into a FLAT vector unnecessarily; c) minimizing further the overhead of interpretation; and d)
leading in some cases to smaller HashTable(s).
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The integration of factorized vector execution does not require major changes to a DBMS
with a vectorized execution model. In order to implement factorized vector executions, the oper-
ators have to be configured to decide if the Cartesian product is necessary and the cost model in
the optimizer has to take the factorized format into account.

The major limitation however, is that factorized vector execution has a limited form of fac-
torization making it impossible to obtain certain smaller f-representations. Generally, the only
allowed representations are ones following f-trees where each node has at most 1 non-leaf non
child node. Consider for example the 4-hop query R(a1, a2), R(a2, a3), R(a3, a4), R(a4, a5).
The best possible representation would follow the f-tree in Figure 4.8a with a worst-case size
N2. However since our factorized vector executor operates on vectors following the structure
described, we only obtain factorizations of the form in Figure 4.8b with a worst-case size N3.

a3

a2

a1

a4

a5

(a) Most compact
f-tree for 4-hop query.

a3

a2

a1 a4

a5

a3

a4

a2

a1

a5

(b) Examples of most compact f-trees that factorized vector execution
can use for 4-hop query.

Figure 4.8: F-trees supported by factorized vector execution.

4.4 Evaluation

In this section, we demonstrate the effectiveness of our factorized vector execution model. We
refer to our GraphflowDB with factorized vector execution as GF-F. We refer to the older version
from Chapter 3 with a Volcano execution model is GF-V. To ensure that our experiments only
test differences due to query processing techniques, the same columnar storage and compression
techniques introduced by Gupta et al. [75] are integrated into GF-F and GF-V. We present
microbenchmark experiments comparing GF-V and GF-F and baseline experiments against
Neo4j, MonetDB, and Vertica using the Social Network Benchmark SNB by the Linked
Data Benchmark Council (LDBC) [55] and the Join Order Benchmark (JOB) [108]. Before
presenting the experiments, we describe the hardware and datasets.
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4.4.1 Setup

Hardware: Similar to the prior chapter, we use a single machine that has two Intel E5-2670
@2.6GHz CPUs and 512 GB of RAM. All code runs on openjdk-17. We set the maximum size
of the JVM heap to 500 GB and keep the minimum heap size of the JVM as is. We use only one
physical core.

Domain Name Nodes Edges

Social LDBC10 30M 176.6M
LDBC100 300M 1.77B
Flickr 2.3M 33.1M

Wiki German 2.1M 86.3M

Table 4.1: Datasets used for factorized vector execution evaluation.

Datasets: The datasets we use are summarized in Table 4.1. Our factorized execution model is
designed to yield benefits under join queries over 1-n and m-n relationships. The technique is not
designed for datasets that do not depict structure, e.g., a highly heterogeneous knowledge graph,
such as DBPedia. As such, we choose the following datasets and queries:

• LDBC: We generated the LDBC social network data [55] using scale factors 10 and 100,
which we refer to as LDBC10 and LDBC100, respectively. In LDBC, all of the edges as
well as edge and vertex attributes are structured but several attributes and edges are very
sparse. LDBC10 contains 30M vertices and 176.6M edges while LDBC100 contains 1.77B
edges and 300M vertices. Both datasets contain 8 entity tables, 15 relationship tables and
34 attributes (29 for entities, 5 for relationships).
• JOB: We used the IMDb movie database and the JOB benchmark [108]. Although the work-

load has originally been created to study optimizing join order selection, the dataset contains
several m-n, 1-n, and 1-1 relationships between entities, like actors, movies, and companies,
and structured attributes, some of which are NULL. JOB contains join queries over m-n re-
lationships, making it suitable to demonstrate benefits of factorized vector execution. We
created a property graph version of this database and workload for GraphflowDB as follows.
IMDb contains three groups of tables: (i) entity tables representing entities, such as actors
(e.g., name table), movies, and companies; (ii) relationship tables representing n-n rela-
tionships between the entities (e.g., the movie companies table represents relationships
between movies and companies); and (iii) type tables, which denormalize the entity or re-
lationship tables to indicate the types of entities or relationships. We converted each row of
an entity table to a vertex. Let u and v be vertices representing, respectively, rows ru and rv
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from tables Tu an Tv. We added two sets of edges between u and v: (i) a foreign key edge
from u to v if the primary key of row ru is a foreign key in row rv; (ii) a relationship edge
between u to v if a row rℓ in a relationship table Tℓ connects row ru and rv. The final dataset
can be found on Github.4

• Flickr and Wiki: To enhance our microbenchmarks further, we use two additional datasets
from the popular Konect graph sets [100] covering two application domains: a Flickr social
network [121] and a Wikipedia hyperlink graph between articles of the German Wikipedia
(WIKI) [101]. Flickr has 2.3M nodes and 33.1M edges while Wikipedia has 2.1M nodes
and 86.3M edges. Both datasets have timestamps as relationship attributes.

Execution: In each experiment, we ran our queries 5 times consecutively and report the average
of the last 3 runs. We did not observe large variances in these experiments. Across all of the
LDBC and JOB benchmark queries we report, the median difference between the minimum and
maximum of the last 3 runs was 1.02% and the largest was 25%, which was a query in which the
maximum run was 24ms while the minimum was 19ms.

4.4.2 Microbenchmarks

We next present experiments demonstrating the performance benefits of factorized vector execu-
tion against our prior traditional push-based Volcano-like processor. Tuple-at-a-time processing
like Volcano’s is adopted in existing systems, like Neo4j [126] and MemGraph [117]. Fac-
torized vector execution has three advantages over traditional tuple-at-a-time processors: (1) all
primitive computations over data, i.e., physical operators within pipelines and expression evalu-
ation, happen in tight loops similar to vector execution engines; (2) the join operators can avoid
copies of edge ID-neighbour ID pairs into intermediate tuples, exploiting the list-based storage;
and (3) we can perform group-by and aggregation operations directly on compressed data. We
present two separate sets of experiments that demonstrate the benefits from these three factors.

We use the LDBC100, Wiki, and Flickr datasets. In our first experiment, we take 3 queries
over a relationship table R(from, to, p) where p is a relationship attribute (e.g., date for LDBC):
i) R(a, b, p) (1-hop); ii) R(a, b,−), R(b, c, p) (2-hop); and iii) R(a, b,−), R(b, c,−), R(c, d, p)
(3-hop). Each query as a predicate p > c where c is a constant. For both GF-V and GF-F, we
consider the standard plan that scans the left most node a, extends right to match the entire path,
and a final Filter operator on the p property of the last extended edge. A major part of the
work in these plans happen at the final join and filter operation, therefore these plans allow us
to measure the performance benefits of performing computations inside tight loops and avoiding

4
github.com/queryproc/columnar-storage-and-list-based-processing-for-graph-dbms
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1-hop 2-hop 3-hop

LDBC100

FILTER
GF-V 24.6 1470.5 40252.4

GF-F
7.7 116.2 2647.3

3.2x 12.7x 15.2x

COUNT(*)
GF-V 13.4 241.9 6947.3

GF-F
4.2 18.9 357.9

3.2x 12.8x 19.4x

FLICKR

FILTER
GF-V 32.6 1300.0 14864.0

GF-F
12.2 95.3 1194.7
2.7x 13.7x 12.4x

COUNT(*)
GF-V 35.3 519.2 4162.5

GF-F
16.9 23.4 51.7
2.1x 21.4x 80.6x

WIKI

FILTER
GF-V 35.8 4500.2 236930.2

GF-F
11.9 1192.5 20329.3
2.9x 3.8x 11.7x

COUNT(*)
GF-V 32.7 1745.2 109000.2

GF-F
19.0 27.6 120.4
1.7x 63.2x 905.1x

Table 4.2: Run time in ms of GF-V and GF-F plans.

data copying in joins. Our results are shown in the FILTER rows of Table 4.2. We see that GF-F
outperforms GF-CV by large margins, between 2.7x and 15.2x.

In our second experiment, we demonstrate the benefits of performing fast aggregations over
compressed intermediate results. We modify the previous queries by removing the predicate and
instead add a return value of COUNT(*). We use the same plans as before except we change
the last Filter operator with a GroupBy operator. Our results are shown in the COUNT(*)
rows of Table 4.2. Observe that the improvements are much more significant now, up to close to
three orders of magnitude on Wiki (by 905.1x). The primary advantage of GF-F is now that the
counting happens on compressed intermediate results.

4.4.3 Baseline System Comparisons

In our second experiment, we compare the query performance of GF-F against GF-V, Neo4j,
which is a row-oriented and Volcano style GDBMS, and two columnar analytical RDBMSs,
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MonetDB and Vertica, which are not tailored for m-n joins. Our primary goal is to verify
that GF-F is faster than GF-V also on an independent end-to-end benchmark. We also aim to
verify that GF-V on which we base our work is already competitive with or outperforms other
baseline systems on workloads containing m-n joins. We used the SNB on LDBC10 and JOB,
both of which contain m-n join queries.

We used the community version v4.2 of Neo4j GDBMS [126], the community version 10.0
of Vertica [181] and MonetDB 5 server 11.37.11 [124]. We note that our experiments should
not be interpreted as one system being more efficient than another. It is difficult to meaningfully
compare completely separate systems, e.g., all baseline systems have many tunable parameters,
and some have more efficient enterprise versions. For all baseline systems, we map their storage
to an in-memory filesystem, set number of CPUs to 1 and disable spilling intermediate files to
disk. We maintain 2 copies of edge tables for Vertica and MonetDB, sorted by the source
and destination vertex IDs, respectively. This gives the systems the option to add further plans
that can perform fast merge joins without sorting for example. For GF-V and GF-F, we use
the best left-deep plan we could manually pick, which was obvious in most cases. For example,
LDBC path queries start from a particular vertex ID, so the best join orders start from that vertex
and iteratively extend in the same direction. For Vertica, MonetDB, and Neo4j, we use the
better of two plans: i) the systems’ default plans; and ii) the left-deep that is equivalent to the
one we use in GF-V and GF-F.

4.4.3.1 LDBC

We use the LDBC10 dataset. GraphflowDB implements parts of the Cypher language, so lacks
several features that LDBC queries exercise. The system has support for select-project-join
queries and a limited form of aggregations, where joins are expressed as fixed-length subgraph
patterns in the MATCH clause. We modified the Interactive Complex Reads (IC) and Interactive
Short Reads (IS) queries from LDBC [55] in order to be able to run them. Specifically Graph-
flowDB does not support variable length queries that search for joins between a minimum and
maximum length, which we set to the maximum length to make them fixed-length instead, and
shortest path queries, which we removed from the benchmark. We also removed predicates that
check the existence or non-existence of edges between nodes and the ORDER BY clauses. Our
final workload contains variants of 18 of the 21 queries in the IS and IC benchmarks and are
provided as part of the open-source codebase [71].

Figure 4.9a shows the relative speedup/slowdown of the different systems in comparison
to GF-V. Tables 4.3a and 4.3b, show the individual run time numbers of each IS and IC query,
respectively. As expected, GF-F is broadly more performant than GF-V on LDBC with a median
query improvement factor of 2.6x. With the exception of one query, which slows a bit, the
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GF-F VER MON NEO GF-F VER MON NEO

Figure 4.9: Relative speedup/slowdown of the different systems in comparison to GF-V on
LDBC10. The boxplots show the 5th, 25th, 50th, 75th, and 95th percentiles.

performance of every query improves between 1.3x to 8.3x. We observed large improvements on
queries that produce large intermediate results and perform filters, such as IC05. On IC05, GF-V
took 8.9s while GF-F took 1.6s. IC05 has 4 m-n joins starting from a node and extending in the
forward direction and a predicate on the edges of the third join. GF-F has several advantages
that become visible here. First, GF-F’s factorized vector execution does not copy any edge and
neighbour IDs to intermediate tuples and performs filters in tight-loops when compared with
GF-V.

As we expected, we also found other baseline systems to not be as performant as GF-F
or GF-V. In particular Vertica, MonetDB, and Neo4j have median slowdown factors of
13.1x, 22.8x, and 46.1x, respectively, when compared to GF-V. Although Neo4j performed
slightly worse than other baselines, we also observed that there were some queries in which
it outperformed Vertica and MonetDB (but not GF-V or GF-F) by a large margin. These
were queries that started from a single node, had several m-n joins, but did not generate large
intermediate results, like IS02 or IC06. On such queries, GDBMSs, both GraphflowDB and
Neo4j, have the advantage of using join operators that use the adjacency list indices to extend
a set of partial matches. This can be highly efficient if the partial matches that are extended are
small in number. For example the first join of IC06 extends a single Person node, say pi, to
its two-degree friends. In SQL, this is implemented as joining a Person table with a Knows
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table with a predicate on the Person table to select pi. In Vertica or MonetDB this join is
performed using merge or hash joins, which requires scanning both Person and Knows tables.
Instead, Neo4j and GraphflowDB only scan the Person table to find pi and then extend pi to its
neighbours, without scanning all Knows edges. For this, GF-V, GF-F, and Neo4j took 333ms,
113ms, and 515ms, while Vertica and MonetDB take 4.7s and 2.7s, respectively. We also
found that all baseline systems, including Neo4j, degrade in performance on queries with many
m-n joins that generate large intermediate results. For example, on IC05 that we reviewed above,
Vertica took 1 minute, MonetDB took 3.25 minutes, while Neo4j took over 10 minutes.

4.4.3.2 JOB

JOB queries come in four variants and we used their first variant (a). We converted the JOB
queries to their Cypher equivalent following our conversion of the dataset. Many of the JOB
queries returned aggregations on strings, such as min(name), where name is a string column.
Since GraphflowDB supports aggregations only on numeric types, we removed these aggrega-
tions. Our final queries are provided as part of the open-source codebase [71].

Figure 4.9b shows the relative performance of different systems in comparison to GF-V.
Table 4.3b shows individual run time numbers of each query. Similar to our LDBC results, we
see GF-F to improve the performance, now by 3.1x. Again similar to LDBC, with the exception
of one query, we see consistent speed ups across all queries between 1.5x and 28.8x. Different
from LDBC, we also see queries on which the improvement factors are much larger, i.e., ¿20x.
In LDBC, the largest improvement factor was 8.3x. This is expected as most of the queries
in JOB perform star joins while LDBC queries contained path queries that start from a node
with a selective filter. On path queries, our plans start from a single node and extend in one
direction, in which case only the last extension can truly be factorized, so be in unflat form. This
is because each i.e., operator that we use first flattens the previously extended node. Whereas on
star queries, multiple extensions from the center node can remain unflattened. Therefore GF-F’s
plans can benefit more from factorized vector execution as they can compress their intermediate
tuples more. We also see that similar to LDBC, GF-V is more performant than the columnar
RDBMSs. However, these systems are now more competitive. We noticed that one reason for
this is that on star queries, these systems’s default plans are often bushy plans (27 out of 33 for
MonetDB and 26 out of 33 for Vertica), which produce fewer intermediate tuples than GF-V,
which does not benefit from factorization and uses left-deep plans. So these systems now benefit
from bushy plans which they did not in LDBC. In contrast, on LDBC, these systems would also
primarily use left-deep plans (only 2 out of 18 for MonetDB and 4 out of 18 for Vertica were
bushy) because on these path queries, it is better to start from a single highly filtered node table
and join iteratively in a left-deep plan to match the entire path. Finally, similar to LDBC, Neo4j
is again least competitive of these baselines.
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IS01 IS02 IS03 IS04 IS05 IS06 IS07
GF-F 2.7 3.0 2.2 36.9 40.6 69.3 38.3

GF-V
2.2 3.9 3.9 307.3 236.6 423.0 307.9

0.8x 1.3x 1.8x 8.3 5.8x 6.1x 8.0x

VER
6.1 16728.2 7.0 1.5 45.2 259.2 24818.9

2.2x 5574.2x 3.2x 0.04x 1.1x 3.7x 647.7x

MON
112.3 282.2 8.3 84.1 516.4 323.0 206.3
40.9x 94.0x 3.8x 2.3x 12.7x 4.7x 5.4x

NEO
103.1 117.4 86.1 12418.9 11665.9 67390.3 12095.2
37.5x 39.1x 39.1 336.6 287.4 972.3 315.6

(a) Interactive Short Queries.

IC01 IC02 IC03 IC04 IC05 IC06
GF-F 36.7 32.4 409.4 13.1 1565.2 113.0

GF-V
88.4 45.2 1521.8 57.3 8925.0 333.1
2.4x 1.4x 3.7 4.4x 5.7x 3.0x

VER
257.2 3063.8 18610.3 1711.6 59351.0 4715.7
7.0x 94.5x 45.5x 130.5x 37.9x 41.7x

MON
160.3 323.2 187330.9 13955.1 165273.0 2783.1
4.4x 10.0x 457.6x 1064.3x 105.6x 24.6x

NEO
669.3 170722.9 86231.9 75254.9 TLE 515.4
18.3x 5264.2x 210.6x 5739.4x - 4.6x
IC07 IC08 IC09 IC11 IC12

GF-F 3.0 2.6 1519.8 11.1 34.2

GF-V
6.3 7.0 2098.1 19.2 84.9

2.1x 2.7x 1.4x 1.7x 2.5x

VER
4092.2 2837.2 17276.2 672.9 5028.1

1348.8x 1094.2x 11.4x 60.9x 147.1x

MON
206.3 920.5 121943.2 572.0 3251.9
68.0x 354.8x 80.0x 51.7x 95.1x

NEO
95.6 108.3 219425.5 2804.1 34043.0
31.5x 41.8x 144.4x 253.6x 996.0x

(b) Interactive Complex Queries.

Table 4.3: Run time in ms for running the LDBC Queries on 5 systems: (i) GF-F; (ii) GF-V;
(iii) VER for VERTICA; (iv) MON for MONET; and (v) NEO for NEO4J.
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1.a 2.a 3.a 4.a 5.a 6.a 7.a 8.a 9.a 10.a 11.a
GF-F 13.5 59.7 41.4 17.4 124.8 9.8 53.4 298.3 209.7 51.3 23.6

GF-V
50.3 120.4 38.0 29.4 460.9 91.4 77.5 1245.6 560.2 110.4 487.3
3.7x 2.0x 0.9x 1.7x 3.7x 9.3x 1.5x 4.2x 2.7x 2.2x 2.1x

VER
214.8 329.8 3928.3 798.1 2591.4 495.2 72.8 1166.2 442.5 395.4 136.9
15.9x 5.5x 94.9x 45.9x 20.8x 50.6x 1.4x 3.9x 2.1x 7.7x 5.8x

MON
36.2 33.0 36.2 120.2 232.5 1428.1 133.6 112.5 282.5 304.1 92.8
2.7x 0.6x 0.9x 1.3x 1.9x 145.9x 2.5x 0.4x 1.4x 5.9x 3.9x

NEO
3077.7 895.3 774.3 203.4 10727.2 206.7 6497.6 3451.7 14946.4 1480.7 2332.6
227.5x 15.0x 18.7x 11.7 85.9x 21.1x 121.8x 11.6x 71.3x 28.9x 98.8x

12.a 13.a 14.a 15.a 16.a 17.a 18.a 19.a 20.a 21.a 22.a
GF-F 58.3 70.0 14.6 362.5 15.0 268.5 548.1 207.8 12.8 13.2 28.6

GF-V
253.7 406.9 33.3 6772.3 34.0 594.6 1700.9 983.0 208.5 22.6 64.4
4.4x 5.8x 2.3x 18.7x 2.3x 2.2x 3.1x 4.7x 1.6x 1.7x 2.3x

VER
870.2 286.3 28.2 2100.5 1028.8 2538.5 1686.0 4777.2 982.5 34.0 99.0
2.4x 4.1x 1.9x 5.8x 68.5x 9.5x 3.1x 23.0x 76.7x 2.6x 3.5x

MON
56.7 1148.2 83.4 172.0 224.5 1304.3 868.2 644.0 7552.3 60.7 140.2
1.0x 16.4x 5.7x 0.5x 14.9x 4.9x 1.6x 3.1x 590.0x 4.6x 4.9x

NEO
5079.1 93.8 291.9 2437.4 4526.6 167.6 1414.8 12047.2 1849.0 272.4 317.8
87.2x 1.3x 20.1x 6.7x 301.2x 0.6x 2.6x 58.0x 144.5x 20.7x 11.1x

23.a 24.a 25.a 26.a 27.a 28.a 29.a 30.a 31.a 32.a 33.a
GF-F 14.5 10.8 107.7 10.5 10.3 26.1 5.6 18.3 112.5 10.0 52.3

GF-V
407.8 47.9 1527.8 19.9 125.3 56.7 18.5 52.7 775.9 24.1 201.6
28.8x 4.4x 14.2x 1.9x 12.2x 2.2x 3.1 2.9x 6.9x 2.4x 3.9x

VER
698.5 518.1 496.2 1239.9 231.0 197.3 3153.1 152.6 2696.3 193.6 125.3
49.4x 47.8x 4.6x 118.7x 22.5x 7.6x 529.9x 8.5x 23.9x 19.3x 2.4x

MON
124.2 993.9 784.8 1736.1 75.9 323.8 1012.3 1940.2 848.1 87.7 88.1
8.8x 91.8x 7.3x 166.1x 7.4x 12.4x 170.1x 107.5x 7.5x 8.8x 1.7x

NEO
2497.1 3505.4 108.6 694.1 1276.7 1573.7 648.2 326.1 152.7 364.1 2723.8
176.5x 323.7x 1.0x 66.3x 124.4x 60.3x 108.9x 18.1x 1.4x 36.4x 52.0x

Table 4.4: Run time in ms for running the JOB Benchmark on 5 systems: (i) GF-F; (ii) GF-V;
(iii) VER for VERTICA; (iv) MON for MONET; and (v) NEO for NEO4J.
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Chapter 5

Caching and Reuse of Intermediate Results

F-representations are the relation representation scheme adopted by the factorized vector execu-
tor approach from Chapter 4. This representation can still contain redundancy on many queries
for intermediate and output relations. To demonstrate this, consider the 4-hop query Q4H =
R(a1, a2), R(a2, a3), R(a3, a4), R(a4, a5). Consider further running Q4H on the input graph in
Figure 5.1a on a query processor capable of producing output following the f-tree shown in Fig-
ure 5.1b. The output f-representation is shown in Figure 5.1c. Observe that the two blue boxes
shown in Figure 5.1c are exactly the same sub-relation. This sub-relation represents all of the
a1 ← a2 1-paths in the input graph that have a2 = v2 binding. Similarly, the red boxes in the
figure are exactly the same sub-relation representing the a4 → a5 1-paths in the input graph that
have a5 = v4 binding. In fact, omitted from the f-representation in the figure are k − 2 other
branches where these same sub-relations are repeated. The reason for these repetitions is that
regardless of whether a3 binds to v31 , v32 ,..., or v3k , the bindings generated for a2 and a4 are the
same and are a2 = v2 and a4 = v4, respectively.

D-representations, i.e., f-representations extended with definitions, capture such repetitions
to provide further factorization benefits over f-representations. A definition is a reusable subex-
pression stored as the “actual values” or as a pointer. Figure 5.1d shows a d-representation that
represents the output of Q4H in a more succinct way than the f-representation shown in Fig-
ure 5.1c. We use the same nodes in dashed boxes to indicate a single shared sub-expression.
The sub-relations rooted in a2 = v2 and a4 = v4 are stored once as values, i.e., cached, and
reused as indicated with the pointers. The theory of factorization shows that worst-case size of d-
representations can be polynomially smaller than the worst-case size of f-representations, which
as discussed in Chapter 4 can be polynomially smaller than the AGM bound, i.e., worst-case size
of flat representations [145]. These worst-case sizes will be made more formal in Section 5.2.
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(a) Relation R(from, to).
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(b) T1.
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×
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×
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∪a4
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×
∪a5

v51 ... v5k

... v3k

×
∪a2
v2

×
∪a1

v11 ... v1k

∪a4
v4

×
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v51 ... v5k

(c) F1.

∪a3
v31

×
∪a2
v2

×
∪a1

v11 ... v1k

∪a4
v4

×
∪a5

v51 ... v5k

... v3k

×
∪a2
v2

∪a4
v4

(d) Fd1.

Figure 5.1: Example relation R and output results for R(a1, a2), R(a2, a3), R(a3, a4), R(a4, a5)
as an f-representation F1 and as a d-representation Fd1 following T1.

This chapter focuses on the adoption of d-representations in a vectorized query executor.
Similar to f-representations, d-representation are tries. Similar to what we previously argued
in Chapter 4, it is challenging to adopt tries in pipelined and vector-based query processors,
which require processing on flat-tuples. No DBMS has adopted d-representations in its query
processor. The chapter proposes the design and implementation of the first general approach to
adopting d-representations in analytical and vectorized query processors. We next overview the
key components of our design and the contributions of this chapter.

5.1 Overview of Contributions

In this chapter, we build on top of our factorized vector executor from Chapter 4. Recall that the
executor’s vectors only use f-representations and factorize data on only limited parts of query
results. In this chapter, we adopt d-representations meeting specific constraints in our design:
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i) use flat tuple-based operators from our factorized vector executor; and ii) keep the standard
pipelined query processor architecture. Both of these constraints enable us to rely on traditional
optimizations and minimize the necessary changes within analytical DBMSs for wider adoption.

We begin by observing that d-representations provide benefits for two reasons: (i) caching
and reusing intermediate relations which are the results of certain subqueries; and (ii) compress-
ing these reusable intermediate relations and the final query results. Note that the standard Hash
Join (HJ) operator from Chapter 4 already achieves some form of (i) and (ii). This is because
HJ decomposes a query into two subqueries and then materializes the results of one within its
build side to reuse. Inside hash tables of HJ(s) in our factorized vector executor, for each key
value, the sub-relation is stored in factorized vectors as explained in Chapter 4. However, this
approach achieves a limited form of f-representations limiting compression benefits and cannot
re-use nested parts of repeated sub-relations as done in d-representations with definitions.

With this insight, the first key component of our design consists of an implementation of d-
representations as nested hash tables that caches reusable sub-relations in query plans and whose
keys can point to other hash tables. We also introduce a blocking operator called DGroup-by
that builds progressively these nested hash tables by appending multiple DGroup-by(s) to a
WCOJ subplan.

The second key component is DAG-style plans, in which INLJ /IMJ operators share d-
representations generated by DGroup-by(s) and use them to skip parts of sub-plans if the sub-
relation for a particular key, e.g., a2 = v2 or a4 = v4 in our example from above, has already
been computed. If so, then the computation execution moves to the child of the last DGroup-by
operator that was used to generate this cached sub-relation. If the sub-relation for a key has not
been computed, then the computation moves to the immediate child of the INLJ /IMJ operator.
This is a minimal change to the INLJ /IMJ operator and importantly the rest of the operators,
e.g., scan and filter, are not changed and continue processing vectors.

For a full system solution, we describe a rule-based optimization layer that we added to the
system to generate plans that perform factorized query processing using definitions. Our rule-
based optimizer modifies the hybrid plan generated by the cost-based optimizer we described in
Chapter 3 by adding the necessary DGroup-by operators.

Our experiments on the LDBC graph benchmark show that our factorized processor can
improve the performance of the system’s factorized vector executor by upto 60x. In our micro-
benchmarks we demonstrate the performance benefits and overheads of our processor under
different query and data-specific factors, such as join structures, and demonstrate which factors
affect the benefits we can obtain from factorization. We further perform a plan study on a set
of queries and show that integrating our approach can make the optimizer of the system more
robust by enabling a larger classes of efficient plans on these queries.
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(b) F2.
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×
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(c) Fd2.

Figure 5.2: Output results for R(a1, a2), R(a2, a3), R(a3, a4), R(a4, a5), where R is the relation
in Figure 5.1a, as an f-representation F2 and as a d-representation Fd2 following T2.

5.2 Preliminaries

We begin by giving an overview of d-representations and d-trees and compare its size bound
with that of f-representations and the AGM bound. A more detailed and formal coverage of this
background is given by Olteanu et al. [145].

5.2.1 D-representations: F-representations using Definitions

Consider the input relation R in Figure 5.1a and the earlier Q4H=R(a1, a2), R(a2, a3), R(a3, a4),
R(a4, a5). We will revisit the f-tree and f-representation we used in the introductory section of
this chapter momentarily. We first give the more classic example of an f-representation and f-
tree. Consider F2, an f-representation following f-tree T2 that is equivalent to a flat representation
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shown in Figure 5.2b. In the figure, all sub-expressions rooted in v2 and v4 are exactly the same
showing that F2 uses the two sub-expressions multiple times. These sub-expressions can be
re-used to compress F2. Recall that a reusable sub-expression is called a definition. We show
this in Figure 5.2c, where we use the same nodes in dashed boxes to indicate a single shared
sub-expression. The figure shows a d-representation Fd2 with two definitions:
• D1 = ∪i=k

i=1 (v5i)
• D2 = ∪j=k

j=1 (v3j × v4 × D1)

F2 in Figure 5.2b has as size, i.e., number of node values:
k [for k v1is] × (

2 [for v1.v2 tuple] +
k [for k v3is] × (

2 [for v3.v4 tuple] +
k [for k v5is]

)
)
= k × (2 + k × (2 + k))
= k3 + 2.k2 + 2.k

After reuse of the subexpressions D1 and D2, the size of the d-representation Fd2 without ac-
counting for pointers is 2k [for v1i .v2 tuples] + 2k [for v3i .v4 tuples] + k [for v5i tuples] = 5k.

Next, let us revisit the f-representation F1 following T1 in Figure 5.1. F1 also uses two
sub-expressions multiple times. Specifically, the sub-expressions rooted at v2 and v4 are ex-
actly the same. These sub-expressions can be re-used to compress F1. This is shown in the
d-representation Fd1 in Figure 5.1d which has two definitions:
• D1 = ∪i=k

i=1 (v1i)
• D2 = ∪i=k

i=1 (v5i)

Given R, F1 has as size: k [for k v3is] × (
1 [for v3i tuple] +
1 [for v2 tuple] +
k [for k v1is] +
1 [for v4 tuple] +
k [for k v5is]

)
= k × (1 + 1 + k + 1 + k)
= 2.k2 + 3.k

After reuse, the size of the d-representation Fd1 without accounting for pointers is 3k [for k
v2.v3i .v4 tuples] + 2k [for k v1s and k v5s] = 5k.
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(a) D1.

a3
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(b) D2.
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a2 {a1}
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(c) D3.

Figure 5.3: Examples of three d-trees. D1 and D2 for the four-hop query a1→a2→a3→a4→a5
and D1 for the triangle query a1→a2→a3,a1→a2.

Common sub-expressions for reuse can be inferred by analyzing the shapes of the input
query and a given f-tree. Specifically, the rule is the following [145]: given an f-tree T and a
sub-expression rooted at node ai, if all the nodes in the sub-expression do not depend on any of
ai’s ancestors then it is possible to re-use the whole sub-expression for the same value of ai.

5.2.2 D-trees

D-trees, which describe the schema of a d-representation, are similar to the f-trees introduced in
Section 4.2.1.1. The only addition is that at each internal node o, i.e., non-root and non-leaf node,
we add the set of ancestors that the descendants of o depend on. If the descendants do not depend
on any of o’s ancestors, the ancestor dependency set is empty. This is exactly the condition when
we can reuse sub-expressions rooted in different bindings of keys to attribute o.

Figure 5.3 shows examples of three d-trees. D1 and D2 in Figure 5.3a and 5.3b, respectively,
are two d-trees for Q4H that extend the f-trees T1 and T2 in Figure 5.1b and 5.2a, respectively,
with subtree dependence attributes. Expression reuse for d-representations following D1 and D2

is possible on each non-leaf node as their ancestor dependency sets are empty. Alternatively, D3

in Figure 5.3c is another d-tree for the triangle query R(a1, a2), R(a2, a3), R(a1, a3). This is an
example where we cannot do caching on the only internal node a2 since its child a3 depends on
a2’s ancestor a1. As such, the d-representation following D3 is equivalent to an f-representation.
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5.2.3 Worst-case Size Bounds for F- and D-representations

Recall that the AGM bound of a query Q, denoted by |D|ρ∗(Q), where D is a database instance,
is the worst-case i.e., maximum output size for a given query on any database instance. Recall as
well that we define |D|s(Q) as the minimal worst-case output size for f-representations and that
s(Q) ≤ ρ∗(Q). We define |D|s↑(Q) as the minimal worst-case output size for d-representations.

Definition 5.2.1 D-representation minimal worst-case output sizes - Given Q and all d-trees of
Q, |D|s↑(Q) is the size of the d-representation following d-tree T*, which is the one describing
the d-representation with the lowest maximum output size across all database instances.

Note that |D|ρ∗(Q) is the size of f-representations following f-trees that are paths, i.e., each
node has at most a single child. Furthermore, s(Q) and s↑(Q) are usually smaller than ρ∗(Q) such
that s↑(Q) ≤ s(Q) ≤ ρ∗(Q). We show this for the 4-hop query Q4H as an example for possible
input edge relations of size N . The AGM bound of Q4H is N4 hence ρ∗(Q4H) = 4. Meanwhile
the worst-case output size of the f-representations following f-trees T2 and T1 in Figures 5.2a
and 5.1b are θ(N4) and θ(N2), respectively. T1 leads to the minimal worst-case f-representation
size for Q4H and therefore s(Q2H) = 2. D-representations described by the d-trees T1 and T2
are of size θ(N) therefore s↑(Q2H) = 1. To summarize, for Q4H , ρ∗(Q) = 4, s(Q) = 2 and
s↑(Q) = 1. Note that d-trees for the four-hop queries lead to representations of size N4, N3 (not
shown in our example) and N2 while all d-trees lead to representations of size N .

5.3 Adopting D-representations

In this section, we present a comprehensive query processor design built on top of Graph-
flowDB’s factorized vector executor. Our goal of adopting d-representations is to find new
caching and reuse opportunities of intermediate results while minimizing their size. In our ap-
proach, we do this within a single pipeline of a query plan, which in our query processor runs a
sequence of INLJ /IMJ operators, i.e., corresponds to a WCOJ sub-plan. We cache intermediate
results within pipelines and materialize them as d-representations. In this section, we give the
details of our design and changes to the GraphflowDB query processor and optimizer. We will
describe our design for the general setting when plans can contain HJ operators and as such are
the hybrid plans of Chapter 3 using factorized vector execution of Chapter 4.
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5.3.1 Overview

A pipeline is a chain of Scan, INLJ /IMJ, Filter, and Probe HT operators ending in a
Sink operator, i.e., Build HT or Accumulator. Note that while it is possible to cache large
parts of pipelines that mix WCOJ subpipelines, (a subpipeline is a chain of operators within a
pipeline), and Probe HT operators, this comes at a large complexity cost. As such, within a
single pipeline, we cache only subqueries evaluated by WCOJ subpipelines, possibly delimited
by Probe HT operators.

We use d-trees of subqueries to statically analyze caching opportunities within a WCOJ sub-
pipeline. Given a WCOJ subpipeline that evaluates a subquery Qs and the valid d-trees for Qs,
we choose one of the d-trees to find the cacheable subqueries of Qs (how we choose a d-tree
is explained in Section 5.3.3). The subqueries are cached and materialized as d-representations
following parts of the chosen d-tree. We introduce a new operator DGroup-by, multiple of
which are chained to materialize the cached subquery. We further introduce changes to the join
operator in order to ‘jump ahead’ to a further away operator in the pipeline skipping a whole
subpipeline. The idea is if this subpipline’s output is materialized already for a particular input,
then it can be reused and we can skip the evaluation for that input. Finally, we introduce new
iterator operators that map d-representations into factorized vectors.

Next, we introduce the details of our query processor and query optimizer in details. Within
this section, we view d-representations logically as presented in our preliminaries in Section 5.2.
Our implementation of d-representations is discussed in details in the next Section 5.4.

5.3.2 Query Processor

In this section, we first cover how we materialize subqueries as d-representations for reuse and
the functionality of our DGroup-by operator. We start with materialization over a simple d-tree
that is a path and then go over handling arbitrary d-trees. We also introduce an optimization to
exploit partial caching opportunities. Throughout the section, we cover the necessary changes to
our operators.

5.3.2.1 D-Representation Materialization

We decompose the materialization of d-representations into interleaved subpipelines with two
different tasks: i) WCOJ subquery evaluation; and ii) subquery materialization as d-representations
using a chain of blocking DGroup-by operators.
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A DGroup-by fills a node in a d-representation by grouping a list of attribute values of ai by
an aj key. For example, the operator DGroup a5 by a4 as part of materializing results following
D1 in Figure 5.3a is used to group a list of a5 values by a given va4 key. It does so in three
steps. First, DGroup a5 by a4 is informed of the grouping value va4 and initializes an empty
list of values La5 . Second, successive call to DGroup-by append a5 values to La5 . Finally,
DGroup-by is informed that there are no more a5 values for va4 and inserts va4 as an a4 node
with a pointer to La5 . Other DGroup-by operators for D1 would work in the same way e.g.,
DGroup-by a4 by a3 inserts a va3 as an a3 node that points to a list of a4 values, where each
value itself points to a5 lists.

For a given query Q and pipeline, we generate dataflows that replace some of the sub-
pipelines. These dataflows exploit reuse opportunities by materializing subqueries of Q fol-
lowing chosen d-trees. In this section, we just inform the reader of the chosen d-tree and explain
how we choose it in the next Section 5.3.3 on query optimization. We showcase this with two
examples: 1) a path d-tree; and 2) a d-tree with branching.

Example 1. (Path d-tree)
Consider the query Q3H(a1, a4) = R(a1, a2, ts1), R(a2, a3,−), R(a3, a4, ts2), P (ts1), P (ts2),
where R(ai, aj, timestamp) is an m-n relationship ai→aj and P (tsi) is a simple predicate on
the timestamp attribute. Consider further the D-tree D3H in Figure 5.4a, which is a valid fac-
torization for the output, and the WCOJ plan P with JAO (a1, a2, a3, a4) in Figure 5.4b.

As P evaluates Q3H , note that { a3, a4 } are only dependent on a2 and { a4 } is only dependent
on a3. However both are evaluated using tuples (va1 ,va2) and (va1 ,va2 ,va3), respectively. D3H

shows these dependencies. When analyzing opportunities for reuse within a subpipeline, we
choose a d-tree that matches the subpipeline’s JAO. We say a d-tree matches a JAO if a preorder
traversal on the d-tree outputs the JAO, which is the case for D3H and JAO (a1, a2, a3, a4). As
such, we can rely on D3H’s structure to decide which subqueries to materialize and reuse. Note
there are other possible d-trees to use but D3H would be the d-tree chosen within our approach
as explained in later in Section 5.3.3.

Given D3H , we would map P into the dataflow DF in Figure 5.4c, which we cover mo-
mentarily. In this dataflow, we would materialize the subqueries of Q3H that can be evaluated
once and reused. We would materialize as a d-representation the subqueries Ma2(a2=va2 , a4)
= R(va2 , a3,−), R(a3, a4, ts2), P (ts2) per unique va2 . Ma2(a4) materialization would follow
D3H’s sub-d-tree rooted in a2. Consequently, we would also materialize recursively subqueries
of Ma2 . Some of which can also rely on reuse during evaluation such as Ma3(a3=va3 , a4) =
R(va3 , a4, ts2), P (ts2), where M(a3) ⊂ M(a4). Note that DF applies projections as neces-
sary. For instance Ma2(a4) implies caching a4 attributes per unique va2 as a3 is not part of
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a1

a2 {}

a3 {}

a4

(a) D3H .

Scan a1

INLJa1 R(a1,a2,ts1)

Filter P (ts1)

INLJa2 R(a2,a3,−)

INLJa3 R(a3,a4,ts2)

Filter P (ts2)

Accumulator

(b) P .

Scan a1

INLJa1 R(a1,a2,ts1)

Filter P (ts1)

INLJa2 R(a2,a3,−)

INLJa3 R(a3,a4,ts2)

Filter P (ts2)

DGroup a4 by a3

DGroup a3 by a2

IteratorMa2

Accumulator

Fa2→Ma2(a4)

Fa3→Ma3(a4)

(c) DF .

Figure 5.4: Example of a WCOJ pipeline P and a Dataflow DF that adds reuse to P
following D3H in Figure 5.4a, whereMa3(a4) = R(a3=va3 , a4, ts2), P (ts2) and

Ma2(a4) = R(a2=va2 , a3,−), R(a3, a4, ts2), P (ts2).

Q3H(a1, a4)’s output. Note further that we do not group a2 per a1 values as this is redundant due
to P scanning unique va1(s) in its Scan a1.

DF aims from a high-level to follow the hand-written code in Algorithm 2. We will refer to
specific lines from the algorithm as we describe the functionality of DF ’s operators. DF is split
into two parts. A WCOJ subpipeline from the Scan operator to Filter P (ts2) (lines 3, 5, 10,
and 15) followed by two DGroup-by operators (lines 19 and 23). From the join operators on
a2 and a3, i.e., INLJa2 and INLJa3 , respectively, we have solid lines for ‘data flow’ that point
to operators ahead in the pipeline. These are similar to the data flow ones pushing intermediate
results to the next operator in P . The jump ahead data flow pointers, indicate the possibility of
skipping a subpipeline. A join operator on ai that points ahead keeps track of the unique vai in
a set Fai . If vai has been encountered, then the subpipeline between the join operator and the
one ahead it points to has materialized the subquery for vai and provides fast access to its results
given vai . For example, INLJa2 in DF keeps track of encountered va2(s) in Fa2 . Specifically,
Fa2 is a set of pairs (va2 , reference to Ma2(a2=va2 , a4)). So, INLJa2 can jump ahead and skip
the evaluation ofMa2(a2=va2 , a4).

Cached subqueries can be accessed later with a new operator (iteratorM) that we ap-
pend latest in the plan. In DF , an iteratorMa2 is appended to produce results in a factorized
vector format for the Accumulator.
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Algorithm 2 Materializing a d-representation following D1 in Figure 5.4a for a1→a2→a3→a4.
Input: D-tree D
1: Fd = empty d-representation
2: Pa2 , Pa3 = { } # Pai: set of ai values encountered that lead to no output.
3: for va1 ∈ Scan(a1) do
4: Sa2 = { } # Sai: d-representation node as (vai , children Ptrs) tuples.
5: for va2 ∈ INLJa1 (va1 ,R(a1,a2,ts1)).Filter(P (ts1)) do
6: if va2 ∈ Pa2 then
7: continue # because va2 encountered and lead to no output.
8: Sa3 = Fd.get(Sa3 given va2)
9: if Sa3 = { } then # 1st va2 encounter

10: for va3 ∈ INLJa2 (va2 ,R(a2,a3,-)) do
11: if va3 ∈ Pa3 then
12: continue # because va3 encountered and lead to no output.
13: Sa4 = Fd.get(Sa4 given va3)
14: if Sa4 = { } then # 1st va3 encounter
15: Sa4 = INLJa3 (va3 ,R(a3,a4,ts2)).Filter(P (ts2))
16: if Sa4 = ∅ then
17: Pa3 .insert(v3)
18: if Sa4 ̸= { } then # either cached in Fd or just evaluated lines (14-16).
19: Sa3 .insert( (va3 , Sa4) )
20: if Sa3 = ∅ then
21: Pa2 .insert(v2)
22: if Sa3 ̸= { } then # either cached in Fd or just evaluated lines (9-20).
23: Sa2 .insert( (va2 , Sa3) )
24: Fd.insert( (va1 , Sa2) )
25: results = iterate over Fd;
26: return results;

Note that each operator has a further control flow shown as a dashed arrow to the previous
operator. It indicates that an operator returns to its previous operator whether the downstream
operators led to any output tuples. Join operations capable of jumping ahead keep track of
the bindings that led to no final output tuples to avoid evaluating them and as such prune the
generation of unnecessary partial tuples. In Algorithm 2, this is equivalent to lines 2, 6-7, 11-12,
16-17, and 20-21.
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a1a0 a2 a3

a4 a5

a6a7
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(a) Qc.

a0

a1 {a0}

a2

a3

a6 a4 {a1}

a5

a7

a8

(b) Dc1.

a0

a1 {a0}

a2

a3

a7

a8

a4 {a1}

a5

a6

(c) Dc2.

Figure 5.5: A query Qc and two valid d-trees Dc1 and Dc2 .

Finally, note that the join operations on ai have a control flow arrow to a corresponding
DGroup-by ai operator. This is the third step described when we introduced the DGroup-By
operator. It is because tuples are produced in vectors with a maximum value, e.g., 1024 and if a
many-to-many join produces more than the maximum, we need to control for this and notify the
DGroup-by ai accumulating the grouped values that there are no more incoming tuples with
ai’s current binding. The control arrow is equivalent to grouping after for loops in Algorithm 2
(lines 19 and 23). Note that the DGroup-by applies projections as necessary. For instance, the
corresponding DGroup-by of INLJa2 projects a3 values and points to a4(s). This is missing
from Algorithm 2 for simplicity of presentation. We explain the projection in Section 5.4 when
we cover our d-representation implementation.

Example 2. (arbitrary d-tree with branching)
The prior example showed a path d-tree with each node having at most a single child node
materialized. In the next example, we show how we build on top of that foundation to use
arbitrary d-trees with branching. We also introduce a novel optimization to exploit further partial
caching opportunities.

Consider the complex query below whose structure is shown in Figure 5.5a:
Qc(a1, a3, a4, a5, a6, a8) = R(a0, a1), R(a1, a2), R(a2, a3), R(a1, a4), R(a4, a5), R(a5, a1),

Rm(a1, a6), R(a7, a1), R(a8, a7), a0 ≤ a8, where
R and Rm are m-n and m-1 relations, respectively.

Consider the WCOJ plan Pc1 with JAO (a0, a1, a2, a3, a6, a4, a5, a6, a7) in Figure 5.6a. The
plan first scans 3 hop subquery (a0,a1,a2,a3) and then evaluates the triangles (a1,a4,a5), extends
to a6, then the 2-hop (a1,a7,a8) and finally applies the filter between a0 and a8. Given Pc1, our
approach chooses the d-tree Dc1 in Figure 5.5b to find possible caching opportunities. Note that
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Scan a0

INLJa0 R(a0,a1)

INLJa1 R(a1,a2)

INLJa2 R(a2,a3)

Scana6 R(a1,a6)

INLJa1 R(a1,a4)

IMJa5 R(a1,a5),
R(a4,a5)

INLJa1 R(a7,a1)

INLJa1 R(a8,a7)

Filter a0 ≤ a1

Accumulator

(a) Pc1

Scan a0

INLJa0 R(a0,a1)

INLJa1 R(a1,a2)

INLJa2 R(a2,a3)

DGroup a3 by a2

DGroup a2 by a1

INLJa1 R(a1,a6)

INLJa1 R(a1,a4)

IMJa5 R(a1,a5),
R(a4,a5)

DGroup a6 by a5

DGroup a5 by a4

DGroup a4 by a1|a6

INLJa1 R(a7,a1)

INLJa1 R(a8,a7)

Filter a0 ≤ a1

Iterator

Accumulator

Fa1→Ma1(a2, a3, a6, a4, a5)

Fa2→Ma2(a3)

(b) DFc1

Figure 5.6: Example of a WCOJ pipeline Pc1 and a Dataflow DFc1 that adds reuse to Pc1

following Dc1 in Figure 5.5b, whereMa2(a3) = R(a2=va2 , a3) and
Ma1(a2, a3, a6, a4, a5) = R(a1=va1 , a2), R(a2, a3), R(a1, a4),R(a4, a5),R(a5, a1).
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the subtree rooted at a1 in Dc1 depends on a0 and therefore per the theory of factorization, we
cannot benefit from caching and reuse. In our approach however, we exploit caching and reuse
even for a subset of the children branches; those that can be cached on a1. Specifically, in Dc1,
the first left-most three branches can be cached on a1 and as such we generate a dataflow plan
that materializes the subquery of Qc containing (a1, a2, a3, a6, a4, a5) following the sub d-tree in
Dc1 rooted at a1 while ignoring the right most branch (a7, a8).

Pc1 is mapped to the dataflow DFc1 in Figure 5.6b. Branching means that our pipeline inter-
leaves multiple WCOJ subpipelines and d-representation subpipelines as DGroup-by operators
to materialize a subquery’s results as shown in DFc1. For instance, DFc1 has a WCOJ subpipeline
starting from INLJa1(a1, a2) followed by DGroup-by operators and then a WCOJ subpipeline
starting from INLJa6R(a1, a6) followed again by DGroup-by operators.

The dataflow materializes the subquery Ma1(a1=va1 , a3, a6, a4, a5) = R(va1 , a2),R(a2, a3),
R(va1 , a4), R(a4, a5),R(a5, va1) for reuse. Consequently it also materializes Ma1’s subquery
Ma2(a3) = R(a2 = va2 , a3) for reuse. For a given va1 , DFc1 materializes first (a2, a3) results
followingDc1, however since we pipeline and evaluate the full subquery for a given va1 in down-
stream operators, if we produce no output tuples, this information is propagated back to INLJa1

using the control flow pointing to previous operators which updates Fa1 to capture that va1 led to
no output results and remove previously materialized parts of Ma1 .

The last DGroup-by operator in DFc1 is DGroup a4 by a1|a6. In this operator, the a6 at-
tribute value is stored with a1 when grouping a4 values because Rm(a1, a6) is an m-1 relationship
and hence we fuse both nodes. This is an optimization to minimize the size of d-representations
and avoid creating a list and pointing to it. We only do so for 1-m and n-m relationships.

In our optimization of exploiting partial caching, we aim to avoid materializing results that
cannot be reused and would be flattened right after the pipeline anyway. Consider another possi-
ble plan with JAO (a0, a1, a2, a3, a7, a8, a4, a5, a6) and d-tree Dc2 in Figure 5.5c. In this case, we
would only cache the subquery of Qc containing attributes (a1,a2,a3) since the second branch can-
not be cached and therefore we decide to pipeline starting at that branch and we ignore caching
in all subsequent branches.

5.3.3 Query Optimization

We build on top of the query optimizer of Chapter 3. This optimizer chooses a WCOJ or hybrid
plan that is executed as a list of pipelines. Factorized vector execution introduced in Chapter 4
is taken into account by parameterizing the physical operators to execute on flat and unflact
vectors as necessary. Recall from Section 5.3.1 that our goal is to make it easier to adopt d-
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Scan a1

...

Build HT on a2

Scan a3

...

Probe HT on a2

...

Accumulator

(a) P .

Scan a1

...

Build HT on a2

(b) Ps1.

Scan a3

...

Probe HT on a2

...

Accumulator

(c) Ps2.

Scan a3

...

Probe HT on a2

...

Accumulator

(d) Ps3.

Figure 5.7: Example of a plan P as two pipelines and three extracted subpipelines Ps to which
we add caching and reuse.

representations and as such we introduce a rule-based approach to adding caching and reuse to
our existing query optimizer instead of developing a new optimizer from the ground-up.

Given a plan as a list of pipelines, we map each pipeline P to a dataflow separately as follows.
For each pipeline we only change subpipelines that include Scan, INLJ /IMJ , and Filter
operators, i.e., only WCOJ subplans delimited possibly by Probe operators and not including a
Sink. As an example, consider the plan in Figure 5.7a made of two pipelines in which operators
denoted by dots (. . . ) represent a chain of INLJ /IMJ and Filter operators. For both pipelines
we consider their WCOJ subpipelines to which we can add caching and reuse and end up with
three such subpipelines in Figures 5.7b, 5.7c, 5.7d. For the subpipelines identified to which we
consider adding caching and reuse, the operators are in dashed boxes in each figure.

Next for each subpipeline, we obtain the join attribute ordering σ within a subpipeline Ps.
Given σ, we pick the d-tree Ds with the lowest height for which a preorder traversal outputs σ.
These properties make Ds the d-tree describing the most opportunities of caching and reuse in
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Ps. There is only one such d-tree. Finally, using the d-tree, we generate a dataflow with which
we replace the subpipeline in the original plan. Examples of dataflows obtained from mapping
WCOJ subpipelines are our two examples in Figures 5.4 and 5.6.

We take the query Q, the chosen d-tree Ds, and subpipeline Ps as input to generate an output
dataflow. If the subpipeline does not start with a Scan then it might depend on attributes eval-
uated by subpipeline prior to Ps so we add all attributes evaluated in the subpipeline before Ps

as a root node to Ds. The generation of the dataflow happens in a recursive fashion. A preorder
traversal on Ds starts from the root and at each node labelled o we do as follows (except for leaf
nodes in Ds which only apply step 1.):

1. Add a Scan or INLJ /IMJ operator, and Filter(s) as necessary to find bindings for o.
2. If o has children and is not obtained with a Scan, o might have repeated bindings during

evaluation. As such, we identify the consecutive child branches that can be cached and
reused starting from the left child.

3. Traverse to the cacheable child nodes which themselves start in step 1. Once done traversing
the cacheable child nodes, append an appropriate DGroup-by operator.

4. Next, traverse to the rest of the child nodes.

Once this initial dataflow is generated, we do one more pass to add Iterator operators as
necessary and to set the appropriate operators that joins should jump ahead to.

5.4 D-Representation Implementation

Our d-representations are implemented as nested hash tables. We explain its implementation
details with an example that captures various considerations and optimizations. Consider the
dataflow DFc1 and the d-treeDc1. This dataflow materializes the results for the subquery Ma1(a3,
a6, a4, a5) = R(a1, a2), R(a2, a3), R(a1, a4), R(a4, a5), R(a5, a1). We show the internal struc-
ture of the materialized d-representation in Figure 5.8.

Each d-representation node is made up of multiple in-memory blocks of size 256 KBs in
which attribute values and pointers to child nodes are stored. Each node labelled by attribute ai
for which we can reuse subtrees has a header that maps an ai value to a slot, which is a pair of
(block ID, offset). The header Fa1 is what join operators reference in our prior dataflows. We
show two headers in the figure for Fa1 and Fa2 , which INLJ operators in DFc1 access. Each
node has value of attributes and children pointers as follows: a consecutive set of attribute values
followed by the pointers. Each child pointer(s) use the highest most bit as follows. If set to 0,
all child values are in a single chunk i.e., belong to consecutive bytes in a block, otherwise, if set
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Figure 5.8: Example of internals of d-representation following Dc1 in Figure 5.5b.

to 1, the child values are split across multiple chunks. When set to 0, and the bit is part of the
single child pointer. Otherwise, it is set to 1 and the bit is part of the the number of chunks. Each
pointer is a tuple (block ID, offset, length). The block 0 for the root a1 node in Figure 5.8 shows
an example of the layout described.

Note that a1 points directly to a4’s and this is done as part of the DGroup-by projection
which merges the chunks of a3 that all a2 children of a given va1 point to. This is shown in the
figure where the various child chunks of 3 chunks of a2 are merged into a single reference. The
leaf d-representation nodes simply store the number of values followed by the values themselves.
During the dataflow execution, all DGroup-by(s) grouping leaf nodes in the d-tree, share the
same memory block to avoid fragmentation and writing to many separate blocks. Finally, notice
that the a6 which is obtained from the a1→a6 relationship in DFc1’s Scana6 which is an m-1
relationship and so the a6 is stored in the same chunks as a1 values. Some alternative designs are
possible and are worth considering, e.g., grouping the a4s into separate lists and using multiplicity
to make vector sizes smaller in subsequent accesses.

5.5 Experimental Evaluation

We present experiments to evaluate our adoption of d-representation and compare it with our
factorized vector executor from Chapter 4. Our experiments aim to answer the following ques-
tions: (1) How much benefit do we obtain with d-representation adoption in an end-to-end
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Name #Vertices #Edges

Epinions (Ep) 75.9K 508.8K
Amazon (Am) 403.4K 3.4M
Google (Go) 875.7K 5.1M
LDBC10 29.9M 176.6M
LDBC30 88.7M 540.9M
LDBC100 282.6M 1.7B

Table 5.1: Datasets used.

benchmark on top of factorized vector execution? 1 (2) What are the benefits that adoption
of d-representation introduce over the plan space of WCOJs? (3) When does the adoption of
d-representation bring the most benefit and for which queries and datasets?

5.5.1 Setup

Hardware: We use a single machine with two Intel E5-2670 @2.6GHz CPUs and 512 GB of
RAM. The machine has 16 physical cores and 32 logical ones. All code runs on openjdk-17. We
set the maximum size of the JVM heap to 500 GB and keep JVM’s default minimum size.

Datasets: Table 5.1 summarizes the datasets used. We use 3 datasets from SNAP [112] and
3 LDBC social network datasets [26] generated with scale factors 10, 30, and 100, which we
denote by LDBC10, LDBC30, and LDBC100, respectively. The datasets include social, web,
and product co-purchasing networks, which have a variety of graph topology and sizes ranging
from several million edges to over a billion edges.

Running: Each measurement is repeated five times. We treat the first two as warm-up, which
we discard, and we report the median of the three subsequent runs.

We split our evaluation into end-to-end system comparisons to answer questions (1) and
(2) and benchmarks to answer (3). We refer to the older version of our query processor from
Chapter 4, i.e., the one using factorized vector execution, as GF-F, and the one built on top of it
adopting d-representations as GF-D.

1We tried but couldn’t obtain the code of FDB [26] from its authors for a comparison.
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5.6 Baseline System Comparison

We use the LDBC benchmark to assess the benefits of adopting d-representations on top of our
factorized and vectorized query processor from Chapter 4. We only consider LDBC’s interactive
complex (IC) queries because LDBC’s Short Read (IS) queries are at most 2-hop queries and do
not lead to any subquery caching and reuse opportunities.

Similar to what we have done before, we modified IC queries. This is because GraphflowDB
is a prototype system that lacks several features that LDBC queries exercise. The system has
support for select-project-join queries, where joins are expressed as fixed-length. The system
has also limited aggregation support.

We modified the IC queries similarly to the evaluation in Section 4.4 as follows. Variable
length join queries that search for joins between a minimum and maximum length are set to the
maximum length to make them fixed-length, and shortest path queries are removed. We also
removed predicates that check the existence or non-existence of edges between nodes and the
ORDER BY clauses.

Next, we run two types of IC queries, ICc which have a COUNT(*) in the SELECT / RE-
TURN clause and ICp which project attribute. In the ICp queries we only return numerical types
as we do not support string types in our d-representation implementation. Note that in our ex-
periments, we find the benefits to be about the same between ICc and ICp and in some cases ICp

queries obtain more benefits from subquery caching and reuse.

Finally, unlike Section 4.4, we turn these queries from point queries into range queries to
introduce more redundant computation. We ran the IC queries on scale factors 10, 30, and 100
(SF10, SF30, and SF100) on queries ICc and ICp with selectivity that made the queries previously
starting from a single source start from multiple. The queries would start from 0.1% or 1% of
the vertices. We denote this by selectivity 0.1% and 1% respectively. Our exact queries are made
available as part of the open-source code.

Similar to Chapter 4, the heavy selectivity on these queries made hand picking WCOJ plans
suitable. Note that we only hand pick a WCOJ plan that uses factorized vector execution and
rely on the rule-based approach of our query optimizer to map it into a dataflow that caches and
reuses subqueries.

5.6.1 Discussion

We report all of our results in Tables 5.2, 5.3, and 5.4. Tables 5.2 and 5.3 report run time numbers
in msecs for all ICc queries, while 5.4 reports ICp01 and ICp02 as a comparison point but similar
results to ICC hold for the rest of the ICp queries as we will explain.
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By adopting d-representations, GraphflowDB improves over all queries except for IC07 and
IC08, for both of which our rule-based optimizer does not add subquery caching and reuse as we
will explain momentarily. The benefits in terms of query speedups are upwards of 68x. The larger
the sizes of intermediate results, the larger the speedups with caching and reuse. Specifically, for
the same selectivity, a larger scale factor leads to more speedups, e.g., for selectivity 0.1%, ICc03
has speedups of 9.05x, 13.6x, and 22.2x for SF10, SF30, and SF100, respectively. Similarly, for
the same scale factor, the smaller the selectivity the larger the intermediate results, and therefore
the larger the benefits. For SF100, ICc03 has speedups of 22.2x and 60.1x for selectivity 0.1%
and 1%, respectively.

We find that the benefits between ICc and ICp are very comparable and in some cases those
of ICp are even larger as shown in Table 5.4. For instance, GraphflowDB obtains more speedups
due to caching on ICp01 and ICp02 for SF10 than on ICc01 and ICc02. This is due to the type
of plans that GraphflowDB supports which relies on INLJ /IMJ operators using adjacency list
indexes and then scanning column attributes that are needed for predicates or are part of the final
output. These scans perform random memory access on column attributes. These accesses lead
to slowdowns that can be avoided due to subquery caching. More traditional HJ based analytical
plans would reduce these speedups but we would still see benefits from caching subqueries that
evaluate joins and push-down projections.
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SF10 - Selectivity 0.1%
ICc01 ICc02 ICc03 ICc04 ICc05 ICc06

GF-F 172.4 173.3 9860.9 295.0 40.3 6653.9

GF-D
51.4 148.9 1089.0 228.2 11.6 898.0

3.35x 1.16x 9.05x 1.29x 3.47x 7.40x
ICc07 ICc08 ICc09 ICc11 ICc12

GF-F 4.5 4.2 5633.7 112.7 993.8

GF-D
4.5 4.2 892.2 31.7 639.4

1.0x 1.0x 6.3x 3.5x 1.5x
SF10 - Selectivity 1%

ICc01 ICc02 ICc03 ICc04 ICc05 ICc06
GF-F 573.2 691.7 29233.1 13811.7 140.2 20743.4

GF-D
65.0 329.8 1119.6 458.5 20.7 974.3
8.8x 2.0x 26.1x 30.1x 6.7x 21.2x

ICc07 ICc08 ICc09 ICc11 ICc12
GF-F 14.7 3.5 18206.0 437.6 2901.3

GF-D
14.7 3.5 1312.2 53.4 2691.2
1.0x 1.0x 13.8x 8.1x 1.0x

SF30 - Selectivity 0.1%
ICc01 ICc02 ICc03 ICc04 ICc05 ICc06

GF-F 1118.8 721.7 56069.2 2260.9 149.8 34585.5

GF-D
134.6 530.9 4119.9 866.2 41.4 2784.9
8.3x 1.3x 13.6x 2.6x 3.6x 12.4x

ICc07 ICc08 ICc09 ICc11 ICc12
GF-F 7.1 3.6 29998.5 403.0 3587.5

GF-D
7.1 3.6 2884.1 96.1 2598.5

1.0x 1.0x 10.4x 4.1x 1.3x
SF30 - Selectivity 1%

ICc01 ICc02 ICc03 ICc04 ICc05 ICc06
GF-F 573.2 691.7 29233.1 13811.7 140.2 20743.4

GF-D
214.7 1413.8 4301.6 1450.8 86.3 3004.2
21.6x 2.2x 44.5x 48.5x 9.9x 38.1x
ICc07 ICc08 ICc09 ICc11 ICc12

GF-F 131.9 18.1 3120.6 205.1 11859.6

GF-D
131.9 18.1 1312.2 53.4 11780.3
1.0x 1.0x 35.4x 9.2x 1.0x

Table 5.2: Run time (msec) for IC LDBC Queries (SFs 10 and 30) for GF-F and GF-D.
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Selectivity 0.1%
ICc01 ICc02 ICc03 ICc04 ICc05 ICc06

GF-F 6513.4 3019.2 380768.1 14904.5 801.4 167647.3

GF-D
603.4 2344.1 17104.0 3267.0 162.7 11535.2
10.7x 1.2x 22.2x 4.5x 4.9x 14.5x
ICc07 ICc08 ICc09 ICc11 ICc12

GF-F 49.6 11.5 189069.7 1642.4 17144.9

GF-D
49.6 11.5 10834.9 256.5 9738.7
1.0x 1.0x 17.4x 6.4x 1.7x

Selectivity 1%
ICc01 ICc02 ICc03 ICc04 ICc05 ICc06

GF-F 20580.7 11521.0 1015240.9 319178.6 3712.5 548625.8

GF-D
774.1 5348.9 16880.0 4690.6 329.3 14884.5
26.5x 2.1x 60.1x 68.0x 11.2x 36.8x
ICc07 ICc08 ICc09 ICc11 ICc12

GF-F 201.8 34.4 576191.8 7074.7 49427.3

GF-D
201.8 34.4 10779.8 395.7 48870.8
1.0x 1.0x 29.1x 17.8x 1.0x

Table 5.3: Run time (msec) for IC LDBC Queries (SF 100) for GF-F and GF-D.

Selectivity 0.1%
SF10 SF30 SF100

ICp01 ICp02 ICp01 ICp02 ICp01 ICp02
GF-F 473.8 337.5 2460.5 1403.9 15509.6 6062.0

GF-D
139.0 146.4 495.9 537.4 1901.4 1981.8
3.6x 2.3x 4.9x 2.6x 8.15x 3.0x

Selectivity 1%
SF10 SF30 SF100

ICp01 ICp02 ICp01 ICp02 ICp01 ICp02
GF-F 1611.5 1200.4 9263.4 4448.6 49172.3 20002.0

GF-D
162.8 367.6 596.7 1208.8 2453.6 4906.0
9.8x 3.2x 15.5x 3.6x 20.0x 4.0x

Table 5.4: Run time (msec) for IC LDBC Queries (SF 100) for GF-F and GF-D.
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On IC LDBC queries, we are seeing large benefits, our sweep of ICc queries across three scale
factors and two selectivity percentages lead to 66 queries. Out of the 66 queries, GF-D leads to:
i) 23 queries with speedups of more than 10x; ii) 10 queries with speedups between 5x to 10x;
iii) 11 between 2x to 5x; iv) 10 between 1x-2x; and v) 12 queries use the same plan as GF-F,
for ICc07 and ICc08. These large benefits are due to the fact that LDBC queries contain several
paths over many-to-many relationships. The queries also contain minimal simple predicates with
no theta joins, i.e., the queries are highly ‘factorizable’.

Note that adding caching to ICc07 and ICc08 leads to slowdowns of 0.4-0.5x. Consider ICc07
with a graph pattern of a 2-hop query person

hasCreator←−−−−−−comment
likes−−→friend. The evaluation

starts at person and as such we can only cache friend vertices per comment. This is however
exactly the type of data access provided by the adjacency list indexes. Our rule-based optimizer
avoids this cache and generates fully pipelined plans.

5.6.2 Impact on WCOJ Plan Space

The adoption of d-representation happens within WCOJ subpipelines of hybrid plans. In this
section, we examine the impact of subquery caching and reuse on WCOJ plans for LDBC IC
queries. To do so, we compare the set of actual run times of WCOJ plans for queries with that of
the dataflows. Broadly, we find that our dataflows tend to make the plan space more robust, i.e.,
in some cases eliminating many bad plans as well as improving good plans.

Table 5.5 shows the speedups on the WCOJ plan spectrum on ICc01. The spectrum contains
a total of 16 plans and 4-5 out of these plans has more than an order of magnitude speedups. For
SF10, selectivity 0.1%, 13 of the plans run in less than 2 secs and 5 plans run for more than 70
secs. Our dataflow plans improve the performance of 3 of these very bad plans making them run
in less than 1 sec for two of them and less than 3 for a third. Being able to completely avoid these
plans makes the plan space more robust.

ICc01’s plan space contains a lot of plans, which is why we only show the speedups bucketed.
On the other hand, ICc02’s plan space contains only four plans for which we show the full
spectrum plan with and without subquery caching. Figure 5.9 shows the spectrums and helps
make the case for adding robustness to a plan space. For example, for SF10, selectivity 0.1%,
three plans running in 1.3 secs or less keep the same run-time while a fourth plan improves by
19x from 18.2 secs to 0.9 secs. The same applies to other configurations where one plan improves
by > 20x, another by 2x and two plans stay with the same run time.
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(a) ∼1x 1-10x 10-100x >100x
# plans 9 3 2 2

(b) ∼1x 1-10x 10-100x >100x
# plans 9 2 3 2

Table 5.5: Number of WCOJ plans on ICc01 per speedup when using subquery caching and
reuse buckets based on order of magnitude on: (a) SF10, selectivity 0.1% and 1% and SF30,

selectivity 0.1%; and (b) SF30, selectivity 1%.

(a) SF10, S=0.1%. (b) SF10, S=1%. (c) SF30, S=0.1%. (d) SF30, S=1%.

Figure 5.9: Plan spectrum for QCc02 showing the run time of WCOJ plans (W) and dataflows
with subquery caching and reuse (Wc). This is shown on different SF and selectivity (S)

configurations.

5.6.3 Microbenchmarks

The goal of our microbenchmarks is to answer our third question regarding the benefits of adopt-
ing d-representations. To do so, we aim at looking at two different aspects, the first is the amount
of computation avoided and the second is the change of benefits dependent on the density/spar-
sity of the input graph. We also use path queries as they are simple and a common query template
part of larger queries.
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Scan E(a1,a2)

INLJ E(a2, a3)

INLJ E(a3, a4)

INLJ E(a4, a5)

Accumulator

(a) P .

Scan R(a0, a1)

INLJ R(a0, a1)

INLJ R(a0, a1)

INLJ R(a0, a1)

DGroup a4 by a3

DGroup a4 by a2

DGroup a4 by a1

IteratorMa1

Accumulator

(b) Pf .

Figure 5.10: A WCOJ plan P and a dataflow Pf which adds d-representation usage to P
evaluating Q4H(a1, a4) = E(a0, a1),E(a1, a2), E(a2, a3), E(a3, a4).

5.6.3.1 Computation Avoided

In order to empirically evaluate the amount of computations avoided, we evaluate the 4-hop join
path query Q4H = E(a1, a2), E(a2, a3), E(a3, a4), E(a4, a5) on SNAP datasets.

The queries are evaluated using plan P , which is a WCOJ plan with JAO (a1, a2, a3, a4, a5)
and dataflow Pf in Figures 5.10a and 5.10b. For 1 ≤ i ≤ 3, each ai attribute has materialized
results of subqueries inMai in Pf such that:
1)Ma2(a2 = va2 , a5) = E(va2 , a3), E(a3, a4), E(a4, a5)
2)Ma3(a3 = va3 , a5) = E(va3 , a4), E(a4, a5)
3)Ma4(a4 = va4 , a5) = E(va4 , a5)
Note that for Q4Hc , the reusable subquery contains as final results the number of output tuples of
M(a4) and not attribute values a4.

Table 5.6 reports the run time in seconds for GF-F and GF-D. GF-D leads to significant
speedups of upto 236x on epinions. To understand these benefits further, we next look at the
computation avoided at different depths of the Q4H .

The 4-hop query Q4H is doing a graph traversal starting from va1(s), i.e., possible bindings
for a1, and finding a5 ID bindings per va1 . We identify depths within the traversal where the
depth Di refers to the output of a join operator matching i-hop queries. For instance, D1 maps
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Dataset GF-F GF-D
Ep 3068.0 13.0 (236.0x)
Am 36.2 4.2 (8.6x)
Go 177.2 17.8 (9.9x)

Table 5.6: Run time (secs) comparing GF-F and GF-D when evaluating
Q4H(a1, a4) = E(a0, a1),E(a1, a2), E(a2, a3), E(a3, a4) on:

1) Epinions (Ep); 2) Amazon (Am); and 3) Google (Go).

Depth #TJ #SJ #M #H

Ep
D1 508.8K 0 51.9K 456.8K
D2 39.9M 39.4M (98.7%) 49.8K 424.3K
D3 3.721B 3.720B (99.9%) 49.6K 422.3K

Am
D1 3.3M 0 403.3K 2.9M
D2 32.3M 28.9M (89.4%) 403.3K 2.9M
D3 314.2M 310.8M (98.9%) 403.3K 2.9M

Go
D1 5.1M 0 714.5K 4.3M
D2 60.6M 56.3M (92.9%) 669.0K 3.6M
D3 878.8M 874.6M (99.5%) 658.7K 3.5M

Table 5.7: Evaluating Q4H(a1, a4) = E(a0, a1),E(a1, a2), E(a2, a3), E(a3, a4), with a WCOJ
with JAO (a1, ), we report the total number of joins (#TJ) with no caching at each depth. We

also report the % and number of saved joins (#SJ) by caches in prior depths. Finally, we report
the number of cache misses (#M) & hits (#H) at each depth. Evaluation on:

1) Epinions (Ep); 2) Amazon (Am); and 3) Google (Go).

to the output matches (a1, a2) by operator INLJ R(a1,a2). Table 5.7 reports the computation
avoided when adopting d-representations. The table reports the total number of joins done (#TJ),
i.e., number of input tuples processed by a join operator in the WCOJ plan P . The table also
reports the number of saved joins (#SJ) by having cached subqueries at prior depths, that is the
number of input tuples not processed due to the subpipeline being skipped. For D1, #SJ is 0.
The dataflow Pf has to process each input tuple including checking the set of visited va1 values.
Joins that are completely saved start at D2.

Both plans at D1 join a1 values as many times as the number of edges in the network with
no work saved. Next both plans, join a2 values. In this case, P joins a2 as many times as there
are E(a1, a2), E(a2, a3) tuples, i.e., 2-hop instances in the network while Pf would only do so
as many times as the number of edges in the network since the a2s traversed are the neighbours
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Figure 5.11: Speedup over factorized vector execution when we reuse expressions as as we
prune a percentage of edges from three datasets: 1) Amazon(Am); 2) Epinions(Ep); and 3)

Google(Go). Query evaluated is: R(a0, a1), R(a1, a2), R(a2, a3), R(a3, a4).

of unique a1s which would be at most the set of edges. The same applies to joining a3, where
P joins a3 as many times as there are E(a1, a2), E(a2, a3), E(a3, a4) tuples, i.e., 3-hop instances
in the graph and Pf does so at most as many times as number of edges in the network. This is
consistent with our expectation where the run time would be linear in the number of edges when
adopting d-representation on path queries. Table 5.7 shows further benefits from the caching at
each depth level. The number of cache misses for ai joins is |V | while the number of cache hits
is |E| − |V |.

5.6.3.2 Dataset Impact

First, we make a note about the impact of skew on the benefits based on Table 5.7. In general, the
more skew, i.e., some vertices having very large neighbourhoods compared to the average, the
larger the joins grow over many-to-many joins, this leads to more benefits from d-representation
due to more computation saved at later depths. From 5.7, Amazon is a uniform dataset, while
Google and Epinions have skew with Epinions having more of it. We can see from the table that
Epinions has the most #SJs followed by Google, and then Amazon. This also translates directly
to run time improvements.

Second, we look at the impact of density/sparsity of the input graph on the benefits of factor-
ization. For our three SNAP datasets: Amazon, Epinions, and Google, we prune 5%, 10%, and
15% of the edges and compare the speedup obtained by GF-D over GF-F. Figure 5.11 shows the
amount of speedups. As the network is more sparse, factorization leads to less benefits, this is be-
cause the joins grow less and is closely connected to the amount of skew in a dataset. In general,
a network with a large expansion rate over path queries gets more benefits from factorization.
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Chapter 6

Related Work

The central thesis of this work is that modern query processors of DBMSs should adopt WCOJ
algorithms and factorization to efficiently evaluate graph workloads, which contain join queries
that are over m-n relationships. The core problem with these queries is that they can generate
very large intermediate results, which worst-case optimal join algorithms and factorization ad-
dress. The research conducted as part of this thesis contributes to an extensive literature on these
topics. The technical contributions of this thesis are on novel approaches to adopt these two tech-
niques into systems. There is also extensive implementation-based work on subgraph matching
on graphs, which is equivalent to what we referred to as graph conjunctive queries, without any
predicates aside from the join conditions. This thesis relates further to other systems approaches
that make DBMSs more efficient on graph workloads by integrating other techniques that are
orthogonal to WCOJs and factorization. In this chapter, we review related work in these topics.
Within Chapters 2-5, we covered the most directly related work to our contributions, e.g., any
prior work we used as a baseline was covered in depth and as such will not be covered in depth
here again.

6.1 WCOJ Algorithms

We begin in Section 6.1.1 by covering algorithmic work on WCOJ algorithms. In Section 6.1.2,
we discuss work that have implemented WCOJ algorithms in actual systems but that was not
covered in Chapter 3. In addition to covering the implementations in DBMSs, this section cov-
ers implementations of WCOJ algorithms in distributed data processing systems and the work
to maintain join queries using incremental versions of these algorithms. Our implementation in
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Chapter 3 included a detailed description of how we optimize these queries. Part of this descrip-
tion was about how we estimate the cardinality of subqueries. In Section 6.1.3, we briefly discuss
work on cardinality estimation that relates to the catalogue-based approach we implemented. In-
terestingly, ideas behind WCOJ algorithms have also been used for cardinality estimation, which
we cover here. We also described how to evaluate WCOJ plans adaptively by picking between
multiple JAOs during runtime. This is the only adaptive evaluation of WCOJ algorithms in the
literature. There is a rich body of work on adaptive query processing in relational systems [51],
which we do not cover here.

6.1.1 Algorithmic Work on WCOJ Algorithms

The theory of worst-case optimal joins started with Atserias et al. ’s work that introduced the
AGM bound as the worst-case tight size for the outputs of join queries [24]. This work introduced
the fractional edge covering number, ρ∗ that we have used in prior chapters. In addition, this
work introduced a new join algorithm that would run in time O(INρ∗+1), if IN represents the
size of the database on a query Q whose fractional edge covering number is ρ∗1. This algorithm
already contained some of the key ingredients of the eventual worst-case optimal join algorithms
NPRR and Generic Join that were introduced by Ngo et al. [135, 137]. Specifically, the Atserias
algorithm would also perform the joins one attribute at a time, which is the key algorithmic
step that differentiates these algorithms from traditional binary join algorithms. Interestingly,
Veldhuizen has revealed that prior to the publication of the NPRR algorithm, LogicBlox, which is
a Datalog system that Veldhuizen has worked on, had implemented another join algorithm called
Leapfrog Triejoin algorithm, that also performed joins an attribute-at-a-time [179]. Veldhuizen
has analyzed the runtime of this algorithm and shown that it is also worst-case optimal [179].

Leapfrog Triejoin, NPRR, and Generic Join are all worst-case optimal in the sense that their
worst-case runtimes are asymptotically bounded by the AGM bounds of queries. They all evalu-
ate joins one attribute at a time. There are however several differences between the algorithms.
For example, NPRR separates values in attributes as “heavy” and “light”, depending on the “de-
gree” of the values on the join attributes. Degree of a value, e.g., a1 = 5, refers to the number
of tuples in the input relations that have this value. Heavy attribute values can generate large in-
termediate results and are handled separately from light values. However, this separation is later
understood to not be necessary in both Leapfrog TrieJoin algorithm and Generic Join, which is
perhaps the simplest of these algorithms. This is the core algorithm we covered in Chapter 3.

1The algorithm was described as a constraint satisfaction algorithm but can also be easily
translated into a join algorithm.
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We mentioned in Chapter 1 when stating our thesis statement that WCOJ algorithms are par-
ticularly suitable for cyclic queries to reduce the intermediate results generated with binary join
plans. An important clarification and connection to make here is with the seminal Yannakakis
algorithm [185]. Yannakakis’s semi-join based algorithm is instance optimal for acyclic join
queries, i.e., it runs in time O(IN +OUT ), where IN and OUT , are respectively the input size
of the database and output size of the query. This algorithm takes an acyclic join query, gener-
ates a binary join/semi-join plan P , performs two rounds of semi-joins to remove any “dangling”
tuples that cannot contribute to the final output. Finally, the algorithm performs a bottom-up join
following P using traditional binary join algorithms. The algorithm, however, only has guaran-
tees for acyclic queries. For cyclic queries, such as our running example triangle query, there
are no known semijoin plans that can remove dangling tuples. In a sense, the inability to re-
move dangling tuples is part of the problem with cyclic queries. It is important to also note that
Yannakakis’s algorithm has a much stronger guarantee than worst-case optimal join algorithms,
which are optimal only in the sense that their worst-case runtimes are no larger than any other
algorithms’ worst-case run time. On any input, they can be sub-optimal. There is no known
instance optimal algorithm for cyclic queries.

Yannakakis’s algorithm is often a subroutine in more advanced join algorithms to achieve
provable bounds on algorithms [12, 16, 89]. Several prior work proposed using WCOJ algorithms
in conjunction with GHDs [16, 89]. Recall from Chapter 3 that GHDs are effectively join plans
whose nodes are subqueries that are intended to be evaluated with a WCOJ algorithm. Once these
subqueries are evaluated, their results can be fed into the rest of the binary join plan. At this stage,
the resulting join query (with results of base subqueries evaluated) is acyclic, so can be evaluated
in an instance optimal manner with Yannakakis’s algorithm. This approach of using a GHD
can be understood as finding an “acyclic structure” of the query by treating cyclic subqueries
as base relations, so at least Yannakakis’s algorithm can be used on this structure (even if not
on the entire query). Different work has shown that this approach can generate more nuanced
worst-case runtimes for queries. For example, Afrati et al. [16] has shown that this approach can
yield O(IN ghw + OUT ) runtime for a query Q whose generalized hyper tree width (which the
EH system used) is ghw. Let GHD D∗ be the GHD of Q such that the maximum ρ∗ exponent of
any of the subqueries in D∗ is the minimum across any GHD of Q. Ghw of Q is the maximum
ρ∗ of the subqueries in D∗. Importantly, ghw of Q is guaranteed to be at most the ρ∗ of Q,
which is the worst-case runtime one could achieve by running a WCOJ algorithm blindly on
Q (i.e., without any decompositions). The key takeaway is that combinations of Yannakakis’s
algorithm and WCOJ algorithms have been used in several work to derive more nuanced worst-
case run times than the AGM bound of the query. However, we are unaware of any system
that implements Yannakakis’s algorithm when evaluating join queries. This is likely due to the
fact that the 2 round of semi-joins is a large overhead despite the algorithmic guarantees that it
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gives. In addition, query plans come with many other operators that intermix with join operators
and executing a semijoin plan on general plans may be more challenging than executing them on
join-only plans. Systems instead optimistically evaluate the joins bottom up assuming tuples will
not be dangling. An empirical analyses of whether there are queries where semi-join reductions
would be beneficial is an interesting research question.

Finally, there have been other join algorithms that aim to achieve stronger notions of optimal-
ity than worst-case optimality. Ngo et al. have introduced a join algorithm called Minesweeper
and its generalization Tetris that achieve “beyond worst-case optimality” [95, 136]. The runtimes
of these algorithms are characterized by a notion called certificate complexity, which captures the
size of the “implicit proof” a join algorithm generates to guarantee that its output is correct. A
detailed coverage of these algorithms are beyond the scope of this thesis. One interesting aspect
of these algorithms is that instead of working on actual values in tuples, these algorithms perform
computations on the gaps between the values (assume the domain of each attribute is integers).
As such, it is unclear how to implement these algorithms inside actual DBMSs and the only work
to date that has implemented these algorithms [140] is a standalone implementation. Whether
these algorithms can be integrated into actual DBMSs is an interesting future work direction.

6.1.2 Other Systems Implementations of WCOJ Algorithms

Implementations in DBMSs: There has been several work other than EH and our implementa-
tion on GraphflowDB that have implemented WCOJ algorithms and evaluated their performance.
Leapfrog TrieJoin algorithm, which we discussed above has been implemented in the LogicBlox
system. Leapfrog TrieJoin algorithm is designed for evaluating joins on general relations and
assumes that the inputs are indexed according to a global attribute ordering. When evaluating
a query Q, the algorithm picks a JAO that’s consistent with this global ordering. The rest of
the algorithm is similar to GenericJoin and based on multiway intersections. Unlike EH and
GraphflowDB implementation, Leapfrog TrieJoin algorithm does not use any binary join opera-
tors [179]. That implementation only generates WCOJ plans.

The Umbra RDBMS [130] implemented a WCOJ-style algorithms [64]. The premise of
this work is that all prior implementations, including the work in this thesis, assume that the
inputs are indexed in some sort order, which can be expensive in practice. Recall that because
GraphflowDB assumes binary relations, we only needed to index the relations twice. However,
for arbitrary n-ary relations, a system would need to order in possibly n! different ways to be
able to support all possible JAOs, which would be prohibitively expensive to maintain. Instead,
Umbra describes a new multiway join operator that computes the trie indexes required by its
WCOJ algorithms on the fly when a query is issued. These indices are built as nested hash tables,
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where each level corresponds to exactly one join key attribute and the leaf nodes are sorted using
a linked list structure. The system has a new HashTrieJoin operator that takes in these hash-trie
indexes of k ≥ 2 relations R1, ..., Rk that are being joined in the query. This is a very practical
approach for integrating WCOJ algorithms into a general RDBMS. Umbra’s approach can also
mix this multiway join operator with other binary join operators in hybrid plans. Umbra uses a
rule-based optimizer to improve the default binary join plan of the system with a modified join
plan that replaces sequences of binary join algorithms with the system’s multiway join operator.

However, Umbra’s approach has the clear disadvantage of having to generate indices on the
fly, which GDBMSs can avoid as they, primarily, process joins over binary relations. So, the
approach proposed in this thesis can be more desirable for GDBMSs. Kùzu [62, 63], which is
the successor system to GraphflowDB and integrates many of the query processing techniques
described in this thesis, drops the assumption of GraphflowDB that the input adjacency lists
are sorted according to neighbor IDs. Instead, Kùzu’s join operator that performs multiway
intersections reads unsorted adjacency lists from storage, sorts them, and indexes them once in
hash tables. Then for each prefix tuple, these sorted adjacency lists are read from hash tables
and intersected. EH, GraphflowDB, Umbra, and Kúzu are currently in the full scope of design
points that have been explored to implement WCOJ algorithms and mix them with binary join
algorithms.

Implementations in Distributed Systems: All of the implementations described so far have
been implemented in single node shared memory systems. We briefly cover work in the dis-
tributed setting. These work assume a different setting, are not implemented in actual DBMSs,
and aim to optimize distributed resources, such as the amount of communication and number of
rounds of communication an algorithm takes. Ammar et al. [20] have implemented a version
of GenericJoin they call BiGJoin on top of the Timely Dataflow system [125, 175]. One of the
primary concerns in distributed query evaluation is to reduce the memory/load overhead of any
single machine, while minimizing communication. Ammar et al. describe a batching technique
to control the memory use. To minimize communication, the authors describe a technique to
pick intersection plans to plan in which order the multiway intersections should be performed
to extend each prefix tuple. For a prefix tuple t, if multiple adjacency lists that are in different
machines need intersecting, these plans aim to shuffle the smaller lists around to ensure minimal
communication.

Chu et al. [43] have described another distributed join algorithm that uses a WCOJ algo-
rithm as a primitive. Unlike the join algorithm of Ammar et al. , Chu et al. ’s algorithm aims
to evaluate the entire join algorithm in a single round of communication2. The algorithm mixes

2Ammar et al. ’s algorithm’s round requirements is commensurate with the AGM bound of
the query divided by a batching factor.
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the Hypercube algorithm [17, 27], which is a communication optimal generic one-round shuf-
fling algorithm for join queries, with an optimized Leapfrog TrieJoin algorithm called Tributary
join. Tributary join indexes the shuffled tuples on the fly, similar to Umbra, and runs Leapfrog
TrieJoin algorithm with a specific attribute ordering. The attribute ordering is tailored for the
case when the tuples come from different relations with different data distributions. Tributary
join’s approach to optimizing attribute ordering is not suitable for graph pattern queries, which
are generally self join queries where tuples come from the same relation.

Incremental Versions of WCOJ Algorithms: Several papers use incremental versions of WCOJ
algorithms to maintain the results of join queries upon updates to the base tables. The earliest
work here was by Veldhuizen who designed an incremental Leapfrog TrieJoin algorithm [180]
to maintain join queries. Broadly, this algorithm keeps the computational trace of the Leapfrog
TrieJoin algorithm in indices which are then used and fixed upon updates. This index can be as
large as the AGM bound of the query that is being maintained.

Ammar et al. as part of implementing BiGJoin [20], proposed an incremental version of
GenericJoin. They adopt the incremental view maintenance (IVM) approach of Blakeley et al.
[30] that decomposes a join query with n relations into n delta queries. For example, for a join
query R(a, b), S(b, c), one of the delta queries would be ∆R(a, b), S(b, c), where ∆R(a, b) is a
small relation that contains only the updates to R. Each of the n delta queries in the decomposi-
tion contains a small delta relation, so each delta query can be evaluated efficiently. Upon updates
to a system, Blakeley et al. have shown that the union of the set of delta queries of a query con-
tains the new tuples that should be added to and the tuples that should be deleted from the latest
output of the query. Ammar et al. have proposed a new IVM algorithm called Delta-GenericJoin
that decomposes join queries into delta queries and evaluates each one using GenericJoin. Un-
like Veldhuizen’s IVM algorithm, Delta-GenericJoin does not require any additional memory
beyond the temporary memory required during computing the delta queries. Ammar et al. have
also shown that upon insertion-only workloads, this approach is worst-case optimal in the sense
that at any point in time t, Delta-GenericJoin’s worst-case runtime is bounded by the AGM bound
of the query at time t. They have also implemented a distributed version of Delta-Generic Join
that they call Delta-BiGJoin.

Kankanamge, Salihoglu, and the author of this thesis have integrated Delta-GenericJoin of
Ammar et al. to a continuous query processor that they developed for GraphflowDB [92, 118].
The goal of the continuous query processor is to facilitate graph pattern triggers to support ap-
plications that need to detect the emergence and deletion of subgraph patterns they register in
GraphflowDB and perform an action for each new or deleted pattern. An example application
is a fraud detection application that needs to detect the emergence of cycles in financial trans-
action network, which are assumed to be indicative of fraudulent money transfers, and alert a
fraud agent. They tackle the problem of sharing common computations across multiple regis-

109



tered queries in the system (specifically their delta queries) and to optimize JAOs of delta queries
to maximize computation sharing.

6.1.3 Cardinality Estimation

Recall from Chapter 3 that GraphflowDB uses a subgraph catalogue-based cardinality estima-
tor. Our catalogue is closely related to Markov tables [13], and MD- and Pattern-tree summaries
techniques [115]. Similar to our catalogue, both of these techniques store information about
small-size subgraphs to make cardinality estimates for larger subgraphs. Markov tables were
introduced to estimate cardinalities of paths in XML trees and store exact cardinalities of small
size paths to estimate longer paths. MD- and Pattern-tree techniques store exact cardinalities of
small-size acyclic patterns, and are used to estimate the cardinalities of larger subgraphs (acyclic
and cyclic) in general graphs. These techniques are limited to cardinality estimation and store
only acyclic patterns. In contrast, our catalogue stores information about acyclic and cyclic pat-
terns and is used for both cardinality and i-cost estimation. In addition to selectivity (µ) estimates
that are used for cardinality estimation, we store information about the sizes of the adjacency lists
(the |A| values), which allows our optimizer to differentiate between WCOJ plans that generate
the same number of intermediate results, so have same cardinality estimates, but incur different
i-costs. Storing cyclic patterns in the catalogue allow us to make accurate estimates for cyclic
queries.

A very interesting application of the theory of WCOJ algorithms has been to use the worst-
case optimal bounds of queries for cardinality estimation. These estimators, introduced by Cai
et al. [36, 50], are called pessimistic estimators as they are guaranteed to never make underesti-
mates. As such, they address the well known problem of existing cardinality estimators, which
suffer from underestimations [110]. These estimators are also summary-based and use a subset
of the inequalities in the linear programs that describe the worst-case optimal bounds, e.g., the
AGM bound.

At first sight, our cardinality estimation technique can seem very different from the linear
program-based pessimistic estimators. Interestingly, Chen et al. [38] have recently shown that
both our catalogue-based estimator (and other catalogue-based estimators, such as Markov tables
and MD- and Pattern-tree summary estimators) and the pessimistic estimators can be seen as
instances of a more general estimator based on finding paths in a cardinality estimation graph
(CEG). The nodes of a CEG are subqueries and an edge between subquery S and S ′ has a
weight describing the factor by which to grow the estimate of the number of S’s to estimate the
number of S ′’s. Chen et al. have shown that all of these estimators can be seen as using similar
(though not the same) CEGs, except that our catalogue-based estimator (and other catalogue-
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based ones) use average degrees of values as edge weights in CEGs, while pessimistic estimators
use maximum degrees.

6.2 Factorized Representations

The core idea of factorization is to detect multi-valued dependencies in the intermediate re-
sults that are generated when processing join queries. The conditional dependencies between
attributes describe these multi-valued dependencies and ultimately lead to redundancy if one
represents relationships using flat tuples (specifically Cartesian products of sets of tuples). Fac-
torized representations exploit these dependencies to represent these intermediate relations in
compressed formats. Multi-valued dependencies have been studied in other context prior to the
work on factorized relationships, such as database design [57]. Factorized representations in-
troduced by Olteanu et al. [144, 145], describe the principles of how to exploit multi-valued
dependencies when processing queries that contain m-n joins. In the rest, we cover work re-
lated to factorized query processing in DBMSs. Recent work by Nikolic and Olteanu [143] have
shown how to use factorization to speed up various related tasks, including incremental main-
tenance of queries with group by and aggregations and joins, matrix chain multiplication and
gradient descent computations. They show that these sets of tasks can commonly be seen as
maintaining view trees whose leaves are views that perform partial computations, e.g., partial
group by and aggregates, and the internal nodes are joins of views with further partial computa-
tions. They show how to achieve similar benefits from factoring out common computations in
different branches of these views and how to maintain these views upon updates. These more
advanced applications of factorization relate less to this thesis and are not covered in detail.

The research described in Chapters 4 and 5 of this thesis tackled how to modify modern vec-
torized query processor architectures to benefit from factorized representations. The closest to
our work are the FDB system [26] and WireFrame [14, 67] which also described a query proces-
sor design that uses factorized representations. We covered FDB in detail in Chapter 4 and do
not cover it here again. There has been further work on the FDB system beyond what we covered
in Chapter 4. This further work studied query processing techniques for aggregations and order-
ing [25]. Similar to the original work on FDB, this work extends FDB with operators that take
as input entire f-representations and output f-representations. Specifically this work discusses
how to push group by and aggregation operations through the branches of f-representations or
break the aggregations into partial aggregations to speed up aggregations over f-representations.
In addition, this work characterizes which sort orders can be quickly enumerated from a given
f-representation and how to transform one f-representation to another one (complying to another
f-tree) to enable fast enumeration of a specific sort order. As we discussed earlier, because this
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work also assumes that the entire intermediate relations are stored in tries, this type of process-
ing seems to require major changes to traditional query processors of existing DBMSs. We note
however that it is an interesting research direction to better understand how one can speed up
aggregations and ordering in factorized vector execution approach of this thesis.

Answer Graph [14, 67] is a recent system that extends PostgreSQL’s query processor for a
join-only subset of SPARQL (i.e., without projections) that performs a two-stage query evalu-
ation for acyclic queries. The first stage is a full semi-join reduction, similar to Yannakakis’s
algorithm that identify only and all of the edges that participate in the final output. This is done
by performing a sequence of “forward extensions” according to a join order that is picked by a
traditional cost-based optimizer which are followed by cascading deletes in case a particular data
node, say ai = 5 does not extend to the next attribute ai+1. After this step, a second stage called
the embedding generation stage generates a set of flat tuples by performing a left-deep join plan.
The result of the first phase of Answer Graph is similar to our d-representations. However, the
following enumeration phase flattens all results. The authors also describe an envisioned but not
implemented version of semi-join reduction for cyclic queries, which is based on a more com-
plex cascading logic. In contrast to this approach, we do not need to handle cascading deletes as
tuples that are not in the output never arrive at our DGroup operator. We also evaluate a larger
class of queries and produce d-representations as outputs.

Finally we cover the work by Xirogiannopoulos and Deshpande on the GraphGen system [183].
GraphGen is a system to extract large graphs from RDBMSs. These extracted graphs are results
of join queries with duplicate elimination. GraphGen is a system that is built as a layer over
an RDBMS and has its own expressive graph extraction domain specific language. For exam-
ple users can extract a co-authors graph from a database of papers and their authors stored in
an RDBMS. The premise of the work is that since edges (e.g., co-authorship) between entities
can be defined as possible (growing) joins between multiple records (authors), graphs that users
might want to analyze can be orders of magnitude larger than the raw records (e.g., papers and
their authors). Therefore extracting these large graphs from RDBMSs and then ingesting them
into a graph analytics system, say to run a PageRank computation, can be very expensive. In-
stead, GraphGen stores these large graphs in compressed formats in its own specialized storage
in memory. Then users can program GraphGen’s vertex-centric analytics API to implement al-
gorithms such as PageRank, which will run over these compressed graphs. The GraphGen paper
offers multiple compressed formats, one of which, called C-Dup, similar to d-representations or
the Answer Graph approach [14]. For example, the C-Dup representation for the co-authorship
example stores the subgraph of authors and papers that contains the set of co-authors and the
papers that make these co-authors (instead of expanding each co-authorship edge between au-
thors). This can be seen as the d-representation of the join result that produces the co-authorship
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graph. When users access the co-authorship edges of any node in GraphGen’s graph analytics
API, GraphGen implicitly recomputes the part of the join from these compressed representa-
tions. One specific challenge this paper tackles is that often in these graph extraction queries,
users would remove duplicate edges. If one were to blindly traverse the C-Dup representation,
same edges could be produced multiple times (e.g., if two authors are co-authors through multiple
papers). The authors describe alternative compression techniques that trade off how much mem-
ory is stored vs how much work is done to remove duplicates. Although these representations
relate to factorized representations we covered in this thesis, the problem GranGen addresses,
which is to compress large extracted graphs, is different than our work and the other work we
covered on factorization, which is efficient m-n join processing in DBMSs.

6.3 Subgraph Matching Algorithms

The queries we focused on in this thesis are equivalent to the problem of subgraph matching,
or subgraph isomorphism, that has been extensively studied by many different communities in
computer science. This is the problem of finding instances of a given query graph pattern in a
larger data graph. We briefly cover this literature here.

Many of the earlier subgraph matching algorithms are based on Ullmann’s branch and bound
or backtracking method [177]. In the terminology used in this thesis, the algorithm conceptually
performs an attribute-at-a-time matching using a JAO. This algorithm has been improved with
different techniques to pick good JAOs and filter partial matches, often focusing on queries with
labels [47, 48, 165]. Several recent algorithms perform preprocessing to find candidate vertex
sets (the set of possible data vertices for each query vertex), build an auxiliary data structure
for these sets and finally pick a JAO for the evaluation. Such algorithms include TurboISO [78],
CFL [29], CECI [28], and DP-iso [76]. Each of these algorithms include optimizations on the
auxiliary data structure as well as query processing. TurboISO, for example, proposes to merge
similar query vertices (same label and neighbours) to minimize the number of partial matches and
once the merged and smaller query is evaluated, perform a Cartesian product to enumerate the
final outputs. CFL, which we covered extensively in Chapter 3 decomposes the query into a dense
subgraph and a forest, and processes the dense subgraph first to reduce the number of partial
matches. CFL also uses an index called compact path index (CPI) which estimates the number
of matches for each root-to-leaf query path in the query and is used to enumerate the matches
as well. CECI and DP-iso rely on an auxiliary data structure which maintains edges between
candidates and also rely on multiway intersections when finding candidate sets. Each of the
algorithms has its own optimization, e.g., CECI divides the data graph into multiple embedding
clusters for parallel processing while DP-iso relies on an adaptive QVO selection and a pruning
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technique called pruning by failing sets which are partial matches with no possible extensions in
the data graph.

Interestingly some of the optimizations that are described in this literature are akin to the core
algorithmic ideas of WCOJ algorithms and factorization. As we mentioned, many, but not all, of
these works match subgraphs query vertex (or attribute)-at-a-time similar to WCOJ algorithms.
CFL and TurboISO have optimizations to delay Cartesian products that appear when matching
different parts of queries, which is akin to factorization. Yet, the work on the theory of WCOJ and
factorization explain the advantages of these optimizations more formally. In addition because
these theories are developed in the context of query processing in relational DBMSs, they give
insights about how they can be integrated into DBMSs. This is not a concern for the many of
the work on subgraph matching where the algorithms are not implemented in actual DBMSs.
Instead they are separate standalone codebases. That is why it is not clear how to decompose
some of the algorithmic steps of CFL [29] or CECI [28] into operator-based query plans.

At the same time, some of the techniques from this literature seems complementary and can
be integrated to further improve existing query processors. For example, some works index dif-
ferent structures in input graphs, such as frequent paths, trees, or triangles, to speed up query
evaluation [184, 190], akin to maintaining a view of small-size joins. Similarly, some of these
algorithms [78] find symmetries in the graph pattern and compute these parts once. Symmetry
detection can also be directly applied in the query processors of DBMSs by evaluating a subquery
once and reusing the results of this subquery in different branches of a join tree. These are practi-
cal optimizations that are complementary to the techniques we integrated into the GraphflowDB
query processor.

6.4 Other Systems Approaches for Efficient Graph Query Pro-
cessing in DBMSs

We next cover several other work that has integrated techniques other than WCOJ algorithms
and factorization into DBMSs to make query processing more efficient on graph workloads.
There are several systems work, mainly from commercial companies, that build separate layers
on top of an existing RDBMSs to support a graph model, such as the property graph model or
RDF, without modifying the core RDBMS’s query processor [157, 170, 173]. There has also
been some work that extends RDBMS to do batch graph analytics, such as a recursive PageRank
computation [58, 87, 88]. We do not cover this literature here in detail. The primary focus of this
line of work is to tackle the problem of how to map their target computations to SQL and use the
RDBMSs as a core engine. They do not modify the query processors of the underlying RDBMS.
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Instead our work proposes different approaches to modify the query processors of RDBMSs to
make them more efficient on m-n joins.

GR-Fusion [79, 80] is a multi-model system that allows users to define graphs over relational
systems. GR-Fusion is developed on top of the VoltDB RDBMS [168] and extends the SQL
supported by VoltDB to contain graph specific constructs to: (i) define graphs, such as “Create
Graph”; and (ii) query these graphs, such as “Path” or “ShortestPath” to generate paths from
these graphs. GR-Fusion’s approach to evaluating these path queries has two key ingredients.
First, GR-Fusion indexes the edges in the constructed graph in adjacency list indices, similar
to the adjacency list index of GraphflowDB. The adjacency list indices store record identifiers
(RIDs) of the source and destination “node” records they index. Second, GR-Fusion adopts
a dual query processor approach where the graph constructs of the queries are evaluated in a
separate plan that consists of graph-optimized operators, such as “ScanPath”, and the results of
these are given to VoltDB’s default processor. The authors implement graph algorithms, such
as Dijkstra’s algorithm to find shortest paths or the BFS graph traversal algorithm to enumerate
paths using the native adjacency list indices to find paths. These traversals are akin to left-deep
join plans that use INLJ-like operators. GR-Fusion does not implement WCOJ algorithm or
factorization. In addition, its dual processor approach is different from our approach where we
aim to develop designs that can be directly integrated into the query processors of a DBMS.
Although we have implemented our techniques in the context of a prototype GDBMS, the core
design principles of our processor is very similar to traditional vector-based query processors
of analytical RDBMSs. GQ-Fast [113] is another system that follows the design of GR-Fusion.
Although GQ-Fast does not extend SQL with graph-specific constructs, it contains means to
create join indices that index RIDs that are stored in adjacency lists. For several query templates
the authors identify, GQ-Fast uses a dual query processor that uses these indices to evaluate joins
using BFS traversals.

GrainDB [86] is a recent work that aims to extend the DuckDB RDBMS [152] with prede-
fined joins, which refers to joins that use system-level RIDs. Virtually all GDBMSs evaluate
their joins using system level node IDs, instead of equality conditions on, say primary keys of
records. We took this style of joins as given in this thesis3. However, RDBMSs evaluate joins by
explicit comparisons of values and without using a join index akin to the adjacency list indices
of GDBMSs. The premise of GRainDB is that the lack of predefined joins is a disadvantage for
RDBMS. At the same time, many GDBMSs use INLJ-like algorithms as their core join operator,
which the authors show is not robust compared to plans that use bushy hash joins, which are com-
mon in RDBMSs. The goal of the GRainDB work is to benefit from both of these advantages.

3We note that GR-Fusion and GQ-Fast also effectively implement predefined joins when they
run their BFS traversal algorithms to enumerate paths
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The authors tackle the problem of extending DuckDB with a join index they call RID index for
primary foreign key joins (so users do not model parts of their databases as graphs), which is sim-
ilar to the indices of GR-Fusion and GQ-Fast. Then they describe a modified hash join operators
called SJoinIdx that uses these join indices. One additional optimization GRainDB introduces
is the following. During the build phase of SJoinIdx, as the operator constructs a hash table, it
also records the RIDs that have been hashed as keys. These RIDs identify the records that need
to be scanned from the probe side. SJoinIdx passes this information sideways from its build
side to the probe side scans to ensure that only the “node” records that will successfully join are
scanned. They show the combination of a RID index and sideways information passing can yield
more efficient and robust join plans compared to vanilla DuckDB and some of the existing native
GDBMSs. Yet they report that these plans are still generally slower than GraphflowDB, which
further benefits from WCOJ algorithms and factorization. Since GraphflowDB is an in-memory
system, it is likely that our queries would not benefit as much from sideways information pass-
ing compared to disk-based systems like DuckDB. GraphflowDB’s successor Kúzu, which is
disk-based has also adopted GRainDB’s sideways information passing optimization. Finally, in
a follow up demo paper [85], the authors of GRainDB extend DuckDB to an actual multimodal
system, where users can indicate that parts of their tables represents nodes and edges in a prop-
erty graph. This extension directly indexes the edge tables in RID indices. They further extend
SQL with constructs to seamlessly query the modeled graphs and tables together. All of these
queries compile to plans that DuckDB generates that are extended with the SJoinIdx operator
that uses the RID index.

Finally, DuckPGQ [171] is an extension to DuckDB that implements SQL/PGQ [4], which
is a new SQL standard to support property graphs. In SQL/PGQ, similar to the approaches de-
scribed above for GR-Fusion or GRainDB’s demo paper, users can model parts of their database
as a property graph and query them in more graph-specific syntax. In terms of query processing,
DuckPGQ focuses on recursive computations of Kleene star to find arbitrary-length paths (e.g.,
p=(a : Person)−/know∗/→(b : Person)) and shortest paths. Specifically, DuckDB extends
DuckPGQ processor with the BellmanFord and multi-source BFS algorithm by Then et al. [172]
and compiles SQL/PGQ queries that contain these constructs into plans that use these algorithms.
We have not focused on advanced recursive algorithms in this thesis. In contrast, DuckPGQ has
not focused on WCOJ algorithms and factorization and refers to these two techniques as future
work.
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Chapter 7

Conclusion

What we referred to as graph workloads in this thesis, i.e., those containing joins over m-n
relationships, are integral to a wide range of application domains. These domains not only in-
clude applications that process classic network-structured datasets, e.g., social networks, protein-
protein interaction networks, and financial and transactional networks, but also applications that
are naturally thought of as “relational” such as those containing orders, parts, and manufactur-
ers. Such traditional datasets have been found to be modelled and queried as graphs in prac-
tice [159, 161]. Practitioners, both in industry and academic settings, use graph workloads on
very large datasets and report scalability on these workloads as the paramount challenge to over-
come for existing DBMSs [159, 161].

The primary challenge when evaluating graph workloads is that the m-n joins in the queries
of these workloads can generate very large intermediate results. Although traditional join opti-
mizers aim to pick plans whose intermediate results generate as small relations as possible, the
plans of these relations use traditional binary join operators that process flat tuples, which can be
suboptimal under m-n joins. This is the gap that has motivated the work in this thesis.

7.1 Contributions

In this thesis, we explored the adoption of worst-case optimal join algorithms and factorized
representations, two novel techniques introduced by the database theory community in DBMSs.
We asked the following research question: how should the query processor and optimizer of an
analytical DBMS change to adopt these techniques without deviating from standard architec-
tural designs, such as pipelining and vector-based execution? The thesis described design and
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implementations of operators, changes to intermediate tuple representations, as well as query op-
timizers that we believe give a blueprint for implementing these techniques in a practical manner
in current DBMSs.

Our first contribution when adopting worst-case optimal joins introduced a new multi-way
join operator and proposed a query optimizer to choose a join attribute ordering when evaluating
queries. Prior techniques from EmptyHeaded and CTJ relied either on the query-specific notions
of cyclicity, such as widths of GHDs of queries, to pick orders or picked orders arbitrarily, e.g.,
based on lexicographic order of the attributes in the query. In contrast, we used the traditional
approach of using a dynamic programming-based optimizer with a novel cost model called in-
tersection cost. Our plan space seamlessly mixes WCOJ plans with binary joins that introduce
decomposition and therefore bushy plans with WCOJ subplans. Parts of our plan space were not
part of prior approaches. As part of this contribution, we also provided extensive experiments
to study which types of plans, WCOJ, binary join, or hybrid were suitable for which types of
queries. We found that the suitability of plans depended on the query structure and on the dataset
characteristics. We also introduced an adaptive technique to make the attribute ordering chosen
by our optimizer more robust.

The multi-way intersection-based join evaluation of WCOJs can avoid generating some large
intermediate results that binary join plans might generate. However, WCOJ plans are equivalent
to left-deep binary join plans on acyclic queries and do not offer any intermediate-result reduction
compared to binary join plans. In fact, on some acyclic queries, the results can be inherently
large, so no matter what type of join algorithm is used, the number of tuples in these intermediate
results cannot be reduced. However, the theory of factorization has shown that these results
can be compressed using the factorized representations called f- and d-representations. While
these representations can lead to much smaller sizes, their physical representation is trie-like and
differs significantly from that of vector-based intermediate tuple representations. As our second
major contribution, we designed and implemented an approach to extend traditional vector-based
query processors to use multiple vector groups instead of a single vector group. This design
trades off the set of factorized representations that can be supported with ease of integration and
preserving the traditional architecture of analytical query processors. Specifically, this design
supports only those factorized representations in which any Cartesian products with a set that
contains more than one value cannot contain nested Cartesian products.

Factorized vector execution adopts f-representations, which can contain duplicate sub-relations
that correspond to results of re-computing the same subquery. D-representations, which extend
f-representations with definitions, is based on the idea of caching such sub-relations once and
using them with pointers. In our third and final contribution, we introduce subquery caching and
reuse by using d-representations which have not been used by any prior prototype or commercial
DBMS. We show how caching and reuse can be implemented in vectorized query processors
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without changing the core operators of query processors of DBMSs, e.g., adopting tries as in-
termediate relation representation. Our approach is based on using nested hash tables, a new
operator called D-Group that caches sub-relations, and adding new branches to join operators
to skip parts of query pipelines when the sub-relations that would be computed by those sub-plans
have already been computed and cached.

We also evaluated the benefits of our approaches on micro-benchmarks and end-to-end bench-
marks and demonstrated that they lead to major performance benefits over existing systems and
approaches on graph workloads. We believe the designs proposed in this thesis are both practical
and easy to adopt and act as a stepping stone towards more scalable and efficient DBMSs on
graph workloads in the future. At the time of writing, there have already been several other work
that has adopted these designs in part. For example, Graphscope [59] adopts our WCOJ query
processing and optimization techniques. Specifically, Graphscope uses our plan space and cardi-
nality estimation technique with minor changes. GraphflowDB also acts as a predecessor to the
Kúzu DBMS [63] developed at UWaterloo. Kúzu adopts our WCOJ query processing approach
and factorized vector execution.

7.2 Future Work

The work presented in this thesis also has many limitations that could serve as directions for
future research. We conclude this thesis by overviewing two of these directions.

Factorization-aware Query Optimization: Although we have studied how to generate plans that
use WCOJ algorithms and binary joins in Chapter 3, we have not rigorously studied how to
optimize queries considering factorization and arbitrary queries in Chapters 4 and 5. In the
approaches described in both of these chapters, we either do not take factorization into account
or use a rule-based approach when generating plans. Prior work describes query-specific (and
database-independent) techniques to generate query plans, e.g., f-trees, which are likely to not
be robust in practice. An important question is: how can one design a factorization-aware query
optimizer? One interesting approach is to consider ways to extend the traditional cost- and DP-
based optimizers to take factorization into account, e.g., how much caching can be expected when
using a d-representation. Such extensions can be adopted more easily than designing completely
novel optimizers.

Factorized aggregations with vectorized query processors: A second limitation of this thesis
is that we focused solely on select-join-project queries, with the exception of simple count(*)
aggregations. Perhaps the biggest performance advantages using factorization would come from
queries with group-by and aggregations. We have not studied the principles of how to perform
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efficient group by and aggregations in our factorized vector execution design. There are several
prior work on aggregations over factorized representations [25, 143]. Specifically the work of
Bakibayev et al. on FDB system [25] considers aggregation queries in a DBMS but this work
assumes that intermediate relations are stored in fully materialized tries.
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Story of the SAP HANA Database. BTW, 2013.

[159] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer Özsu.
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