
Foundations and Trends® in Databases

Modern Techniques For Querying
Graph-structured Databases

Suggested Citation: Amine Mhedhbi, Amol Deshpande and Semih Salihoğlu (2024),
“Modern Techniques For Querying Graph-structured Databases”, Foundations and
Trends® in Databases: Vol. 14, No. 2, pp 72–185. DOI: 10.1561/1900000090.

Amine Mhedhbi
Polytechnique Montreal

amine.mhedhbi@polymtl.ca

Amol Deshpande
University of Maryland

amol@umd.edu

Semih Salihoğlu
University of Waterloo

semih.salihoglu@uwaterloo.ca

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading (by
robots or other automatic processes) is prohibited without explicit
Publisher approval. Boston — Delft



Contents

1 Introduction 74
1.1 Target Audience . . . . . . . . . . . . . . . . . . . . . . . . . 79
1.2 Brief Background . . . . . . . . . . . . . . . . . . . . . . . . 80

2 Predefined Joins 81
2.1 Overview of Joins in SQL and Graph Query Languages . . . 82
2.2 Value-based Joins . . . . . . . . . . . . . . . . . . . . . . . . 82
2.3 Predefined Joins and Join Indices . . . . . . . . . . . . . . . 84

3 Worst-case Optimal Join Algorithms 93
3.1 History of the AGM Bound and WCOJ Algorithms . . . . . 96
3.2 AGM Bound and WCO “Generic Join” Algorithm . . . . . . 98
3.3 Worst-case Optimal Join Only Plans . . . . . . . . . . . . . 101
3.4 Mixing With Binary Joins . . . . . . . . . . . . . . . . . . . 117
3.5 FreeJoin: Rule-based Binary Join Plan Modification . . . . . 121
3.6 Other Work and Open Problems . . . . . . . . . . . . . . . 123

4 Factorization 128
4.1 Overview of Factorization . . . . . . . . . . . . . . . . . . . 132
4.2 F-Representations Background . . . . . . . . . . . . . . . . . 133
4.3 Approaches to Adopting F-Representations . . . . . . . . . . 142
4.4 Background on D-Representations . . . . . . . . . . . . . . 149



4.5 Approach to Adopting D-Representations by Graphflow . . 153
4.6 Data-dependent Compression . . . . . . . . . . . . . . . . . 156
4.7 Other Work and Open Problems . . . . . . . . . . . . . . . 159

5 Execution of Regular Path Queries 162
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.2 Automata-based Techniques . . . . . . . . . . . . . . . . . . 166
5.3 Relational Algebra-based Techniques . . . . . . . . . . . . . 170
5.4 WaveGuide: Combining the Two Approaches . . . . . . . . . 172
5.5 Other Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6 Conclusions 176

References 178



Modern Techniques For Querying
Graph-structured Databases
Amine Mhedhbi1, Amol Deshpande2 and Semih Salihoğlu3

1Polytechnique Montreal, Canada; amine.mhedhbi@polymtl.ca
2University of Maryland, USA; amol@cs.umd.edu
3University of Waterloo, Canada; semih.salihoglu@uwaterloo.ca

ABSTRACT
In an era of increasingly interconnected information, graph-
structured data has become pervasive across numerous do-
mains from social media platforms and telecommunication
networks to biological systems and knowledge graphs. How-
ever, traditional database management systems often strug-
gle when confronted with the unique challenges posed by
graph-structured data, in large part due to the explosion of
intermediate results, the complexity of join-heavy queries,
and the use of regular path queries.
This survey provides a comprehensive overview of mod-
ern query processing techniques designed to address these
challenges. We focus on four key components that have
emerged as pivotal in optimizing queries on graph-structured
databases: (1) Predefined joins, which leverage precomputed
data structures to accelerate joins; (2) Worst-case optimal
join algorithms, that avoid redundant computations for
queries with cycles; (3) Factorized representations, which
compress intermediate and final query results; and (4) Ad-
vanced techniques for processing recursive queries, essen-
tial for traversing graph structures. For each component,

Amine Mhedhbi, Amol Deshpande and Semih Salihoğlu (2024), “Modern Techniques
For Querying Graph-structured Databases”, Foundations and Trends® in Databases:
Vol. 14, No. 2, pp 72–185. DOI: 10.1561/1900000090.
©2024 A. Mhedhbi et al.



73

we delve into its theoretical underpinnings, explore design
considerations, and discuss the implementation challenges
associated with integrating these techniques into existing
database management systems. This survey aims to serve as
a comprehensive resource for both researchers pushing the
boundaries of query processing and practitioners seeking to
implement state-of-the-art techniques, in addition to offer-
ing insights into future research directions in this rapidly
evolving field.



1
Introduction

Graph-structured data is ubiquitous in many real-world domains and
applications. Social networks, financial transactions, telecommunication
networks, and knowledge graphs are just a few examples where data is
naturally represented as a graph with entities as nodes and relationships
as edges. Querying and analyzing these graph-structured datasets is inte-
gral to a wide range of analytical applications such as recommendations
in social networks, fraud detection in financial transaction networks,
threat detection in call networks, and inference over knowledge bases
(Sahu et al., 2020).

As an example application domain, consider financial transaction
networks. These networks model entities like individuals, businesses,
and financial institutions as nodes, with transactions between them as
edges. Analyzing these networks is crucial for tasks like detecting money
laundering, tax evasion, and other financial crimes. Typical queries
involve finding long chains of transactions (acyclic paths) that may
indicate suspicious activity, or identifying tightly connected clusters
(cliques/near-cliques) of entities engaging in coordinated illicit behavior.

Figure 1.1 shows an example graph containing 6 entities (nodes)
and 7 relationships (edges) between them. We assume that the input

74



75

Works

Lives

Follows Follows

Mahinda New York

FollowsKarim

Acme

Follows

Lives

Carmen

Zhang

{age: 20}

{age: 30}

{age: 40}

{age: 50}

{year: 2019}

{year: 2021}

{year: 2020}

Figure 1.1: An example of a property graph capturing social network data. Name
properties of nodes are written directly inside the rectangles representing nodes.

Figure 1.2: Representation of the example graph from Figure 1.1 as a collection of
relations.

graphs are directed in this monograph, however, most of the discussion
applies to undirected graphs as well. Further, we logically model these
graphs as a collection of relations as shown in Figure 1.2, where there is
a separate relation for every entity type (label) and every relationship
type (label). We note that this is a logical representation that we adopt
for presentation purposes, and does not necessarily dictate the physical
storage layouts, the data structures and indexes that may be built on top,
or the query processing algorithms. In other words, we use the relational
representation to express the queries to be executed against this graph



76 Introduction

so that we can more easily contrast and compare with relational query
processing techniques; however, following the principle of physical data
independence, the physical storage representation is not required to
match that logical representation.

Given the tabular representation of graphs, a large fraction of graph
analysis and querying tasks (collectively referred to as graph workloads)
can be seen as select-project-join-aggregate queries on these tables, po-
tentially with recursion. However, unlike typically relational workloads,
graph-structured datasets and workloads have two primary defining
features:

(i) Prevalence of many-to-many relations across entities:
Unlike typical relational workloads which primarily feature key-
foreign key connections across tables, graph workloads primarily
contain many-to-many relationships (e.g., all the relationships
in the example graph above, i.e., Follows, Works, and Lives, are
many-to-many relationships).

(ii) Prevalence of complex join-heavy queries over these rela-
tions: The prevalent tasks in graph workloads translate to queries
with many joins across these many-to-many relationships. The
joins in these queries can have several different structures:

(i) cyclic, such as when finding cliques of phone calls;
(ii) acyclic, such as when finding long chains of financial trans-

actions; or
(iii) recursive, such as when finding shortest connections between

users in social networks.

This contrasts with traditional relational workloads, such as those found
in the popular TPC benchmarks, that contain many primary-foreign
key (PK-FK) joins. The combination of complex join structures in the
graph workloads and the many-to-many cardinality of relations in these
datasets pose serious challenges for traditional query processors. For
example, queries can generate large intermediate relations that often
cannot be handled by traditional techniques.



77

The last decade has seen the emergence of numerous prototype
and commercial DBMSs that are optimized for graph workloads. These
include specialized systems such as graph DBMSs (GDBMSs) that
adopt the property graph data model, e.g., Neo4j (Neo4j, Inc, 2023a),
TigerGraph (Tigergraph, 2023), GraphflowDB (Kankanamge et al.,
2017), Kùzu (Feng et al., 2023), Avantgraph (Leeuwen et al., 2022);
earlier RDF systems, e.g., RDF-3x (Neumann and Weikum, 2010);
and graph-optimized extensions of RDBMSs, e.g., GR-Fusion (Hassan
et al., 2018), GRainDB (Jin and Salihoglu, 2022), and GQ-Fast (Lin
et al., 2016). The goal of this monograph is to survey a set of modern
query processing techniques that have been integrated into the query
processors of these systems. These include:

(i) Pointer-based joins (Section 2) that rely on system-level dense
IDs in contrast to traditional value-based joins in RDBMSs.

(ii) Worst-case optimal join (WCOJ) algorithms (Section 3), which
are a new class of join algorithms that address the problem of
large intermediate size generation for cyclic many-to-many join
queries. Compared to traditional plans that use a tree of binary
join algorithms and perform the joins in a query pairs of table
at a time, WCOJs algorithms perform the joins one column at a
time.

(iii) Factorization (Section 4), a class of techniques to compress inter-
mediate relations that exhibit multi-valued dependencies generated
when performing many-to-many joins, specifically in the acyclic
parts of queries. The theory of factorization represents such inter-
mediate relations in different factorized representations as unions
of Cartesian products instead of flat tuples. The theory of factor-
ization explains when query processors can exploit such factorized
representations by analyzing the join conditions between variables
during query compilation time.

(iv) Techniques for regular path queries (Section 5), a popular class
of recursive graph queries. Amongst recursive queries, most prior
work focuses on regular path queries. We cover the traditional



78 Introduction

automata-based plans of Mendelzon and Wood (1989) and α-join
plans based on α relational algebra introduced by Agrawal (1988),
and the more recent WaveGuide plans of Yakovets et al. (2016a)
that mix both of these approaches.

We overview: (i) the foundations of these techniques when appro-
priate; (ii) the current design choices different DBMSs have made to
integrate these techniques; and (iii) the challenges for existing implemen-
tation approaches, which provide promising avenues for further research.
Our goal is to bring a structure to this vast theory and systems-oriented
literature. We focus on the application of these techniques for join
processing over static databases though we briefly mention works that
apply these techniques to the problem of incrementally maintaining
query results when the underlying databases are dynamic.

We primarily cover these techniques in the context of a centralized,
sequential computation model, which has been the focus of most of the
work on these techniques so far, including WCOJ algorithms, factoriza-
tion, and RPQs. There is a vast body of work on building on parallel
and distributed graph analytics platforms (Yan et al., 2017), primarily
based on the so-called vertex-centric programming framework (Malewicz
et al., 2010). This framework has also been incorporated into several re-
lational database systems (Fan et al., 2015; Jindal et al., 2014). However,
the target workload for those systems is very different from the types
of queries that we focus on in this monograph. Some of the example
graph analysis tasks include: finding most central or influential nodes
in the graph (e.g., by calculating metrics such page rank or betweenness
centrality), identifying communities in the graph, understanding influ-
ence propagation, etc. Although there is some overlap, the algorithmic
techniques discussed in this monograph are not applicable to executing
those types of tasks; instead, specialized parallel systems (Shun and
Blelloch, 2013; Wang et al., 2016) are typically used given the scale
of the graphs involved in the application domains like social media,
finance, disease transmission, etc. On the flip side, it has been shown
how to implement multi-way joins efficiently on top of the vertex-centric
framework (Smagulova and Deutsch, 2021) and other distributed pro-
gramming paradigms (Afrati and Ullman, 2011); we discuss some of
that work briefly where appropriate.



1.1. Target Audience 79

The techniques we discuss in this monograph are generally applicable
to any database system where the workload maps to multi-way join
queries over relations. This includes RDF databases that store the RDF
data as a collection of tables and map queries over the data (typically
in SPARQL) to multi-way join queries over those tables (Neumann and
Weikum, 2010; Abadi et al., 2007; Erling and Mikhailov, 2009). It also
includes document databases that adopt XML or JSON data model,
but “shred” the data into a collection of tables and translate the queries
to join queries (Tatarinov et al., 2002). However, they do not apply
directly to systems that use specialized storage schemes or index data
structures to execute queries (e.g., gStore, Zou et al., 2014a). We note
that there are a number of similarities between WCOJ algorithms and
traversal-based techniques for subgraph pattern matching (Sun et al.,
2020), but more work is needed to unify these somewhat disparate lines
of work.

Finally, we focus exclusively on read queries in this monograph. In
most cases, updates to the graph can be directly mapped to updates
to the underlying tables, and can benefit from the mature and efficient
support for transactions and ACID properties in relational databases.
This is, in fact, a key motivation behind using a relational database as
the backend storage for a graph database. However, the specific mix
of queries and updates may influence the decisions about how many
and which tables to use. We don’t discuss these issues further in this
monograph.

1.1 Target Audience

This monograph is intended for readers who are familiar with basic
concepts of internals of databases, such as the general paradigm of
compiling high-level queries into executable query plans and core query
processing operators, such as scans and joins. Beyond that we cover the
necessary background in each section. We are particularly interested
in making the monograph accessible to readers with graph analytics or
graph processing systems backgrounds. However, we adopt a relational
view of query evaluation even if logically the datasets in our examples
are often modeled as graphs. This is because the foundations of many of
the techniques we cover were developed in the context of join processing



80 Introduction

over sets of records. At parts, we cover some advanced material on
database theory. We accompany these parts with suggestions to skip for
readers who may be more interested in understanding the core query
processing techniques and how they are integrated into systems.

1.2 Brief Background

We end this introductory section with a brief overview of some back-
ground on the formal notation we use for describing join queries and
databases. The necessary notation for regular path queries is covered in
Section 5. Background for each of the techniques we cover is provided
in detail in each section.

Unless otherwise stated, we assume that input graphs are directed
and modeled as binary relations, that are denoted with capital letters
R and E or variants such as R1 or E2. The attributes of relations are
generally denoted with lowercase letters that start with a, such as a1 or
a2. In some figures, we use attributes ‘from’ and ‘to’, ‘src’ or ‘dst’, or a
similar variant of these words to denote the sources and destinations of
the edges.

We consider natural join queries over these binary relations that we
denote by Q (or a variant Qi). We generally assume full join queries,
i.e., where no projections occur. We denote queries in Datalog syntax,
where we generally omit the attributes in the head of the rules. The
following is an example showing how we denote the “triangle” query:

Q∆ ∶= R1(a1, a2), R2(a2, a3)R3(a3, a1)
Sometimes, we write a predicate next to a variable in the head or

body of these rules to indicate filters. For example, Q(a1=1, a2, a3) ∶=
R1(a1 = 1, a2),R2(a2, a3), R3(a3, a1 = 1) represents the query that finds
all triangles where a1 has value 1.

In a few parts of the monograph, we also use example queries from
SQL and the Cypher query language (Francis et al., 2018). Cypher is the
query language of the Neo4j system that is also adopted by several other
GDBMSs, such as MemGraph (Memgraph Ltd, 2023) and Kùzu (Feng
et al., 2023). The meanings of Cypher queries is explained in the parts
of text when they are used.



2
Predefined Joins

In this section, we describe a common difference in the implementations
of the core relational join operators that are used in RDBMSs and
GDBMSs. Specifically, joins in RDBMSs are value-based while those
in GDBMSs are based on using internal integer record IDs (RIDs)
of the nodes and a join index. We refer to the latter style of joins
as predefined or pointer-based joins. These terms will be described in
detail momentarily. For now, we note only that the distinction between
predefined and value-based join processing is orthogonal to the actual
join algorithms preferred in these systems. In other words, there can
be predefined and value-based implementations of any join algorithm,
such as binary hash join or index nested loop joins as well as worst-case
optimal join algorithms. In this section, we focus on the implementations
of standard binary join operators; in Section 3, we discuss examples of
worst-case optimal join operators that perform predefined joins as well
as those that perform value-based joins. We first begin by clarifying the
meaning of joins in the context of query languages of GDBMSs.

81



82 Predefined Joins

2.1 Overview of Joins in SQL and Graph Query Languages

In the context of RDBMSs, joins are expressed in the FROM and
WHERE clauses of SQL. Consider the Person and Follows relations
from our running example from Section 1, shown partially also in
Figure 2.1. Consider the SQL query below that finds the ages of people
that Carmen follows:

SELECT b.age
FROM Person a, Follows e, Person b
WHERE a.name = ‘Carmen’

AND a.name = e.pFrom AND e.pTo = b.name

In the query languages of many GDBMSs, joins are expressed ex-
plicitly in the graph patterns that are drawn in the queries. Below is
the Cypher query that is equivalent to the above SQL query.

MATCH (a:Person)−[e:Follows]→(b:Person)
WHERE a.name = ‘Carmen’
RETURN b.age

The ‘( )’ notation is used to specify the node records and ‘-[ ]→’ notation
is used to specify the relationship records. Together, the pattern in
the MATCH clause above is equivalent to joining two Person “node”
tables, ‘a’ and ‘b’, with the Follows “relationship” table ‘e’.1 The rest
of the query is very similar to SQL: the WHERE clause expresses
additional predicates and RETURN, similar to SQL’s SELECT, returns
the projected expressions.

2.2 Value-based Joins

Although the above two queries are equivalent, their typical execution
in existing RDBMSs and GDBMSs are quite different. Specifically, joins
in RDBMSs are value-based, i.e., the system will run the join predicates

1In many publications on graph literature, this computation is referred to as
“traversing” the neighborhoods of node records. However, from the perspective of the
DBMS that is evaluating the query, this computation is exactly joining the Person
and Follows relations as expressed in the SQL query.



2.2. Value-based Joins 83

Person
name age

Mahinda 20
Karim 30

Carmen 40
Zhang 50

(a) Person records.

Follows
pFrom pTo year

Mahinda Karim 2021
Carmen Zhang 2019
Mahinda Carmen 2021
Karim Carmen 2020

Mahinda Zhang 2021
(b) Follows records.

Figure 2.1: Person node records and Follows edge records.

expressed in the WHERE clause using the actual data types of the
columns in the predicate. For example, in the above query, the condition
‘a.name = e.pFrom’ is on string columns. To demonstrate this, let us
review the execution of the HashJoin operator, which is one of the
standard join operators for equality joins.2 Figure 2.2 shows an example
HashJoin plan for the query. HashJoin has two children operators, each
one giving the operator one of the two relations to join. Each HashJoin
operator’s execution consists of two phases:

• Build phase: The “build relation” (the right child in Figure 2.2) is
scanned completely and a hash table is built on the scanned tuples.
The key of the hash table is the attribute value in the join predicate.
For example, the HashJoin-1 operator in the figure builds a hash
table over the Person tuples that satisfy the condition; in this case,
it would contain just one entry with the name property Carmen
as the key (no payload is needed for this hash table).

• Probe phase: For each tuple t of the “probe relation” (the left
child in Figure 2.2), the hash table is probed to find matching
tuples from the build relation.

The plan in Figure 2.2 contains a second HashJoin operator to join
the result of (σname=′Carmen′ (Person) &name=pFrom Follows) with the
second Person table. Importantly, the evaluation of the join condition

2Equality joins refers to the fact that the join predicates between Person and
Follows tables in our example query are equality conditions.



84 Predefined Joins

Figure 2.2: An example query plan, using value-based HashJoin operators, for
finding the ages of Person nodes that follow the node with name Carmen. The plan
is simplified and omits showing the projections done in the plan.

is value-based. For example, in the HashJoin-1 operator, when the
‘(pFrom=Carmen, pTo=Zhang, year=2019)’ tuple from Follows is used
to probe into the hash table, a string equality check is performed between
the pFrom value “Carmen” and the key “Carmen” stored in the table.
Similar value-based equality checks would be performed if the system
had instead used other join operators, such as merge-join or index
nested-loop join operators. In short, we call a join operator value-based
if the operator performs comparison operations on the actual values
stored in the records that are being joined. As we momentarily discuss,
GDBMSs typically do not perform the equality checks on actual values
of the records that are stored.

2.3 Predefined Joins and Join Indices

In contrast to value-based joins, joins expressed in the graph patterns of
graph query languages are often evaluated using internal integer record
IDs (RIDs) of the nodes. We refer to these type of joins as predefined
or pointer-based joins. We begin by clarifying the term “predefined”.
When using GDBMSs, users need to explicitly define which of their
records are nodes and which are edges. Since edges are used to join



2.3. Predefined Joins and Join Indices 85

node records with each other, users effectively predefine3 to the system
the common joins that they will perform.

This information is almost universally exploited by GDBMSs by
building a join index (a.k.a. an adjacency list index). Join indices were
introduced by Valduriez (1987) as an index to speed up arbitrary join
queries, say between two relations R and S, by keeping the RIDs of
successfully joining R and S tuples in an index. We omit reviewing their
initial designs here except to note that join indices have not seen any
adoption in RDBMSs. However, throughout history, many DBMSs that
adopt a graph model have adopted forms of join indices to link node
records with each other. We describe an overview of the design and
usage of join indices in modern native GDBMS, such as Neo4j (Neo4j,
Inc, 2023a), Kùzu (Feng et al., 2023), GraphflowDB (Kankanamge et al.,
2017), Memgraph (Memgraph Ltd, 2023), as well as several prototype
GDBMSs that have been developed over RDBMSs such as GR-Fusion
(Hassan et al., 2018), GQ-Fast (Lin et al., 2016), or GRainDB (Jin and
Salihoglu, 2022).

2.3.1 Example Join Index (aka Adjacency List Index)

When a user defines the Follows table as an edge/relationship table from
Person node records to Person node records, GDBMSs will physically
construct “links” between the joining Person records. These links are
physical pointers between the node records that store the RIDs of the
Person records in a data structure. In graph terms, this can be simply
thought of as a form of an adjacency list index of a graph. Different
GDBMSs use different data structures to store these RIDs but in the
end all of those store the following index over the Follows relation.

3Historically, the term “predefined” was used by Ted Codd in his Turing Award
Lecture to criticize the GDBMSs of the 1960s and 1970s (Codd, 1982). Codd was
criticizing these systems for requiring users to predefine their joins to the system
as links/edges and arguing that in the relational model of data, any two records
from two different relations can be joined on arbitrary columns. Similar to RDBMSs,
modern GDBMSs implement high level query languages, using which users can
join arbitrary node or edge records with each other. Therefore, at this point, this
predefinition is an advantage for GDBMSs as they can use this information to build
automatic join indices over the edge records to perform joins of nodes with their
neighbors more efficiently than value-based joins.



86 Predefined Joins

Consider extending the Person relation with the RIDs of each record.
Figure 2.3 shows a virtual vRID column on Person that lists the RID of
each Person record. For example, Mahinda has a RID of 0, Karim has
1, etc. The figure also shows a logical version of the Follows relation
if the original pFrom and pTo values were replaced with the RIDs of
the referenced Person columns. A join index is an index that takes in
the RID of a Person node u and returns the RIDs of all joining Person
records with u through the Follows relation. For example, a join index
needs to map 0 to {1, 2, 3} because there are three Follows records with
Mahinda (0) in the pFrom column: Karim (1), Carmen (2), and Zhang
(3). Importantly, the join index is over the Follows relation but stores
the RIDs of the Person node records.4

Person′
vRID name age

0 Mahinda 20
1 Karim 30
2 Carmen 40
3 Zhang 50

(a) Extended Person records.

Follows′
RIDFrom RIDTo year

0 1 2021
2 3 2019
0 2 2021
1 2 2020
0 3 2021

(b) Indexed Follows records.

Figure 2.3: Logical representation of extended tables with RIDs. Gray values are
not materialized in any data structure.

GDBMSs use different data structures to store the join indices over
relationship records. Bonifati et al. (2018) cover the commonly used
structures in more detail. For reference, we show an example physical
storage of an index in a data structure called the compressed sparse row
(CSR) storage. Logically, a CSR consists of two arrays: (i) an offsets
array; and (ii) a data array. The data array stores the neighbor IDs of
each node. For each node u with RID j, offsets[j] stores the beginning
offset of u’s adjacency list in the data array. The end of u’s list is
offsets[j+1] (not inclusive). Figure 2.4 shows the join index over the
Follows relation stored in CSR format. In practice, GDBMSs often

4We note that join indices often additionally keep track of the RIDs of the
relationship records as well.



2.3. Predefined Joins and Join Indices 87

Figure 2.4: Logical view of (forward) join index implemented in the CSR format.

store disk-based versions of these indices, e.g., Kùzu’s indices are stored
on disk and in CSR format. Although different GDBMSs use different
storage structures, the two common properties of the join indices in
GDBMSs are the following:

• RIDs are system-level dense integers, i.e., they are consecutive
integers that start from 0 and go until the number of nodes in the
referenced nodes relation.

• GDBMSs index the relationship records in two join indices, once in
the forward direction and once in the backward direction. Given the
RID of a node record v, double indexing allows quickly accessing
both the incoming and outgoing neighbors of v during query
processing. In our example, with two join indices, one can find
both the people who Mahinda follows quickly as well as the people
who follow Mahinda.

The fact that the join indices store dense integers gives GDBMSs several
advantages during join processing. First, RIDs in DBMSs generally serve
as pointers to retrieve records. That is, given the RID of a node record,
systems often can find the page of the record on disk. That is why
predefined joins in GDBMSs are sometimes also referred to as pointer-
based joins. Second, the use of RIDs can avoid value-based comparisons.
Value-based comparisons can be slow operations if the join predicates
are on variable-length data types, such as strings.

In the rest of this section, we cover two different operators that are
used in systems to evaluate predefined joins using RIDs and discuss
their pros and cons: (i) using Extend/Expand operators; and (ii) using
HashJoins using RIDs. Both of these are binary join operators similar
to value-based HashJoins of RDBMSs.



88 Predefined Joins

2.3.2 Predefined Joins using Extend/Expand Operators

One common join algorithm in GDBMSs appears under the names of
Expand or Extend. We use the term Extend here. Example systems
implementing Extend include Neo4j (Neo4j, Inc, 2023a), GraphflowDB
(Kankanamge et al., 2017), GRFusion (Hassan et al., 2018) and GQFast
(Lin et al., 2016). Figure 2.5 shows an example plan using this operator
for the Cypher query that finds the ages of people Carmen follows. The
plan is drawn left-to-right. Extend has a single child and scans tuple
from this child operator. Each scanned tuple contains the RID of a node
ID bound to a variable. For example, in our example query, the tuple
would contain (a=2), which is Carmen’s RID. Then the operator extends
(a=2) to the RIDs of the neighbors of node 2 using the join index. In our
running example and query plan, Extend would produce (a=2, b=3),
since 3 (Zhang) is the only neighbor of 2 (Carmen). Assuming that the
join index is stored on disk, this style of join processing is akin to indexed
nested loop join algorithms in database literature (Silberschatz et al.,
2005).5 The example plan in Figure 2.5 also shows a Lookup operator,
another common operator that can be found in GDBMSs, which looks
up properties/columns of node records from the node relationships. In
our example, given the RID of Zhang, which is 3, Lookup retrieves the
age of Zhang.

Figure 2.5: Example plan for the 3-hop query that uses Extends.

These operators are simple to implement in practice. Further, plans
using these operators can be very efficient for simple queries, such as
the query above, where the query can be answered simply by scanning
a few node records and looking up their neighbors in the join index.
At the same time, Extend can also lead to random I/Os, which can

5If the join index is completely in memory, as in in-memory GDBMSs such as
Graphflow and MemGraph, then this is akin to hash join algorithms, where the
index serves as a pre-computed hash table, where joining tuples can be looked up.



2.3. Predefined Joins and Join Indices 89

degrade performance in disk-based systems. Consider a 3-hop version
of the query above, this time finding Karim’s neighborhoods:

MATCH (a:P)−[e1:F]→(b:P)−[e2:F]→(c:P)−[e3:F]→(d:P)
WHERE a.name = ‘Karim’
RETURN d.age

Person and Follows are abbreviated as P and F in the above query.
Consider the plan shown in Figure 2.6 that uses only Extend operators
followed by a Lookup operator. Suppose the query is executed on the
graph database shown in Figure 2.7 and Karim’s RID is 1. In this plan,
the third Extend will take as input the tuples (a=1, b=12, c=1000),
(a=1, b=12, c=50), (a=1, b=3, c=1000), (a=1, b=3, c=100), and (a=1,
b=12, c=2). This will lead to look ups of adjacency lists of nodes 1000,
50, 1000, 100, and 2 in the join index. Note that the neighbors have
no order and that neighbors can be repeated across adjacency lists.
This can result in random and repeated I/Os if the join index is stored
on disk, which can lead to severe performance degradation. A similar
situation arises when properties of those neighbors need to be scanned,
e.g., in the last Lookup operator of the plan in Figure 2.6.

Figure 2.6: Example plan for the 3-hop query that uses Extends.

Figure 2.7: Example random I/Os in the name file when using Extends in the
query plan in Figure 2.6.



90 Predefined Joins

2.3.3 Predefined Joins Using HashJoins

Notice that in value-based HashJoin plans of RDBMSs, the above
problem does not arise at all. HashJoins by design sequentially scan
and hash the tuples in one relation and then sequentially scan the other
one and probe into the hash table. In a way, the random I/Os are
replaced with random look ups in the hash tables, which are assumed
to fit in memory. Instead, the I/Os are done when the build relation is
scanned but is guaranteed to be sequential. However, Extends have the
advantage that they only scan the necessary parts of the files and avoid
full scans of relations or join indices. For example, in the 1-hop query
we used in the beginning of this section, a modern RDBMS, say Umbra
(Neumann and Freitag, 2020) or DuckDB (Raasveldt and Mühleisen,
2019a), would scan the Person records and create a hash table with
Carmen’s tuple in it. Then it would read the entire Follows table and
probe into the hash table. Recall that the GDBMS plan in Figure 2.5
that uses Extend scanned only Carmen’s adjacency list, which is a very
small fraction of the Follows relation.

Recently, Jin and Salihoglu (2022) have proposed and implemented
an extension over DuckDB, called GRainDB. This work proposes to
implement a version of predefined joins that use RIDs and a join index
to obtain the best behavior of Extends and HashJoins. The approach is
based on extending HashJoins to pass the necessary RIDs that need to
be scanned sideways to the probe side in a semijoin filter. This filter is
then used by the scan operators on the probe side to avoid full scans of
relations or join indices. This core apprach has also been implemented
in the Kùzu GDBMS (Feng et al., 2023), which is what we review here.
At a high-level Kùzu’s storage is similar to the setting we described
here and consists of disk-based and CSR-based join indices.

Consider the 1-hop query again. Kùzu’s plan for this query is shown
in Figure 2.8. In the build phase, the Person node records are scanned
and Carmen’s record and RID 1 is found and hashed in a hash table.
Once this phase is over, the operator has enough information to know
that only vertex 1’s Follows edges need to be scanned from the join
index. This is put into a semijoin filter, which has 1 bit for each Person
node. 1 indicates that the node’s neighbors should be scanned and 0



2.3. Predefined Joins and Join Indices 91

Figure 2.8: Example plan using modified HashJoin operator that uses sideways
information passing. The right side is the build side and scans the tuple (RID=1,
name=Carmen) from Person records and passes a semijoin filter with only v1 set to
1 and other RIDs set to 0. This enables the scan operator on the probe side to only
scan v1’s adjacency list.

indicates that it should not. This filter is passed to the probe-side scan
operator that scans only the adjacency lists of vertices that have 1 in
the semijoin filter. Therefore this approach avoids full scans of tables
as well as guards these plans against random and repeated I/Os. Note
that the use of a semijoin filter exploits the dense integer ID property
of predefined joins as it assumes that the keys that can be joined are
integers between 0 and |V|, where |V| is the number of Person nodes in
the database.

Jin and Salihoglu (2022) and Feng et al. (2023) present performance
comparisons of HashJoin vs Extend-based plans. These evaluations
suggest that Extend-based plans are more performant when selectivities
of the joins are very high, but degrade as they get low. In particular, if
queries are more complex and Extend operators are used in sequence
similarly to left deep plans, then the performance degradation is severe.
HashJoin-based plans are more robust for such complex queries.

2.3.4 A Note on the Storage Designs of GDBMSs

Join indices are one storage structure used in GDBMSs. We end with a
note about other common storage structures of GDBMSs. The design
space here is not different than the design space in RDBMSs. Consider
node and edge records that have structure, i.e., where each node record
with a particular type, say Person, has the same set of properties. Then
the two major design points to store these records are row-oriented



92 Predefined Joins

or column-oriented layouts. GDBMSs always index edge records in
join indices. Some systems use structures that mimic the join indices
to store edge properties. For example, Graphflow and Kùzu adopt
columnar structures and store the properties of the edges in parallel
CSR structures (the different CSRs for the join index and each rel
property share the CSR offsets) (see Gupta et al., 2021, and Feng et al.,
2023).

Another design point is the one adopted by Neo4j. Neo4j’s join index
(Neo4j, Inc, 2023b) is a linked list of relationship records. Within each
relationship record, there are pointers to the first property record. Each
property record stores a single property as (key, data type, value) triple
and has pointers to other property records. A similar structure exists
for node records and node property records as well. Linked list-based
storage design is a very old design point in databases, e.g., it was used
in very early DBMSs, such as the IDS system of the 1960s (Bachman,
2009). Unlike CSRs, which are optimized for read performance, linked
list-based storage is optimized for small writes. It also makes it easy
to store arbitrary properties that are outside the general structure of
the records. This is a feature some systems support to provide a more
flexible data model, albeit compromising on scan performance.



3
Worst-case Optimal Join Algorithms

In this section, we cover the theory and system integration of worst-
case optimal join (WCOJ) algorithms, which propose a solution to the
problem of large intermediate size generation for cyclic m-n join queries.
Cyclicity/acyclicity of queries is an important structural property of
queries that is known to have an important role in terms of how efficiently
the query can be evaluated. For now we only note that, in the context
of subgraph pattern queries, if the undirected version of the pattern
has cycles, then a query is cyclic. Otherwise, it is acyclic.

To motivate the challenge of evaluating cyclic queries, consider the
triangle query R(a, b), S(b, c), T (a, c) on the input graph shown in
Figure 3.1. R, S, and T each have m tuples, shown respectively in the
figure as red, green, and blue edges (e.g., (1a, 1b) is a tuple in R). The
graph has 3m edges and contains 3m − 2 triangles. So, the number of
triangles is linear in the number of edges. These triangles are in the
form of: (1a, 1b, ic), (1a, ib, 1c), and (ia, 1b, 1c) for i = [1, ..., m] (-2 is for
over counting (1a, 1b, 1c) three times). However, any binary join plan
P on the query will take Ω(m2) time because the intermediate size of
its first join will contain Ω(m2) many open triangles. Consider as an
example the plan ((R&S)&T ), where the inner join is R(a, b)&S(b, c).

93



94 Worst-case Optimal Join Algorithms

1a

2a

ma

…

1b

2b

mb

…

1c

2c

mc

…

Figure 3.1: Example input database in the form of a graph on which any binary
join plan is suboptimal. The figure is based on a figure in Ngo et al. (2013).

This computes the open triangles that consist of a red and a green edge.
There are m2 +m − 1 many such open triangles. The first m2 of these
are in the form of (ia, 1b, jc), for i, j = [1, ..., m]. Any other binary join
plan will create the same amount of open triangles.

The core problem of binary join plans is that they can generate
many intermediate tuples that do not participate in the final output. In
join processing there is a technique called semijoin reductions that aims
to address the above challenge. At a high-level, the goal of semijoin
reductions is to remove “dangling” tuples from the inputs that are
guaranteed to not participate in the final output. Consider the input
database in Figure 3.2 and the query R(a, b), S(b, c), T (c, d), W (d, e).
The tuples in R, S, T , and W are shown, respectively, as red, green,
blue, and black edges in the figure. As a subgraph pattern this can be
interpreted as an acyclic 4-hop query. The database has Θ(m) many
tuples. Observe that the output of this query is empty as any 3-paths
from left to right ends with on even d node, i.e., with 2d, 4d, 6d, etc., but
none of those nodes have an outgoing black edge. Consider the join plan
(((R&S)&T )& W). If we blindly execute this query, the first R&S join
would generate Ω(m2) many tuples. However, some of the input tuples
are “dangling”, i.e., are guaranteed to not participate in the output. For
example, none of the blue edges can participate in the output because
none of them have a following black edge. In other words none of the
tuples in T join successfully with W . Recursively, once blue edges are



95

Figure 3.2: Example input database in the form of a graph. Red, green, blue,
and black edges represent, respectively, the tuples in R(a, b), S(b, c), T (c, d), and
W (d, e). On the 4-hop query that joins these 4 tables, the output is empty and all
of the edges in this graph are dangling and can be removed.

removed, we can observe that none of the green and black edges can
participate in the final output. Finally, once those are removed, we can
recursively observe that none of the red edges can participate in the
final output. This type of recursive removal of dangling tuples is the
core idea behind semijoin reductions.

In a well celebrated result, Yannakakis (1981) has shown that on
any acyclic join query without projections, one can remove all dangling
tuples with a linear time semijoin reduction. Let IN and OUT denote,
respectively, the number of tuples in the input and output relations of
a query. Yannakakis (1981) has shown that after removing all dangling
tuples in linear time, one can pick any binary join plan P and have the
guarantee that the intermediate result sizes of P will not be larger than
the output size. This implies that there is a join algorithm for acyclic
queries that runs in time Θ(IN +OUT). This is an instance-optimal
algorithm, which is the highest notion of algorithmic optimality. No
algorithm, modulo some offline preprocessing and indexing steps, can
beat this runtime asymptotically.

Let us come back to the earlier example of running the triangle
query on the database of Figure 3.1. In this example, both the input
and output are of size Θ(m). However, even though the intermediate
size of any binary join plan is Θ(m2), no tuples are actually dangling.



96 Worst-case Optimal Join Algorithms

Readers can check that every edge in Figure 3.1 participates in a triangle.
Therefore, the technique of removing dangling tuples cannot improve
the runtime of binary join plans. Nonetheless, can we still do better
than generating Ω(m2) many intermediate tuples? Even if we cannot
have an algorithm that is instance optimal, i.e., runs in time Θ(m),
can we have algorithms whose runtimes are asymptotically better than
Ω(m2) for the triangle query? These are the motivating questions that
have led to the theory of WCOJ algorithms.

3.1 History of the AGM Bound and WCOJ Algorithms

We next cover some history of the algorithms for cyclic join queries
and the sequence of progress in literature that led to the development
of WCOJ algorithms. This section covers formal material and can
be skipped by readers eager to learn about the workings of WCOJ
algorithms.

It was known since the 1980s that Yannakakis’s algorithm can
evaluate acyclic join queries in O(IN+OUT) time. It was further known
that the semijoin plans used by Yannakakis’s algorithm could not be
used for cyclic queries (or cyclic parts of queries). Therefore it was well
understood that acyclicity was an important advantage for efficient
evaluation of join queries. Therefore a standard approach for evaluating
queries that had cyclic components was to perform query decompositions.

Briefly, query decompositions transform queries by evaluating/flat-
tening their cyclic components into base relations, after which the
transformed query becomes acyclic. In decomposition approaches, one
pays the upfront cost of evaluating the cyclic parts of queries. Often this
cost is a super-linear polynomial in the data size and the degree of this
polynomial depends on the width of the query. Notions of query width,
such as treewidth or hypertree width, are formal notions that describe
“how cyclic” a query is. We will cover several of these later in this
section. For our discussion here, we only note that query decomposition
approaches achieve runtimes in the form of O(INf(w) +OUT), where w

is some notion of query width and f(w) is some function of width, e.g.,
w + 1. However, it was not well understood how well different notions of
width characterized the costs of evaluating cyclic parts of queries, and



3.1. History of the AGM Bound and WCOJ Algorithms 97

no major algorithmic progress for evaluating cyclic parts of queries was
made.

In the late 2000s and early 2010s, a series of papers by Atserias et al.
(2008) and Ngo et al. (2012) made progress along two directions:

(i) They tightly characterized the costs of evaluating cyclic parts of
queries, known as the AGM bound of queries, which is charac-
terized by a new structural property of queries known as their
fractional query number.

(ii) They provided join algorithms that match the AGM bound of
queries, known as worst-case optimal join (WCOJ) algorithms.

At a high-level, this literature observes that binary join plans of existing
systems are provably subobtimal when evaluating cyclic join queries.
The classic example is the triangle query: E(v1, v2), E(v2, v3), E(v3, v1),
whose AGM bound when the input relation E contains IN tuples is
IN3/2, whereas one can show input databases where any binary join
plan will take Ω(IN2) time. To address this sub-optimality, WCOJ
algorithms evaluate queries attribute-at-a-time, instead of table-at-a-
time approach of binary join plans. The core algorithmic operation of
WCOJ algorithms is to perform multiway intersections of sets of values
from different relations that bind to the same attribute.

The suboptimality of binary join plans manifests itself only if the
relations in the queries depict m-n cardinality. For example, if the joins
in a cyclic query are non-growing primary-foreign key joins, binary
join plans are not sub-optimal. That is why both the cyclicity and the
m-n nature of the joins are important for these algorithms to have an
advantage over binary joins. This is also why these algorithms have
found their best applications in the context of graph data management,
where the input databases are generally assumed to be in the form of a
network that depicts m-n relationships between nodes, and workloads
of applications frequently find cyclic patterns in these networks, such
as triangles, diamonds, or cliques, which correspond to cyclic joins.

In this section we first provide the background on the AGM bound
and a core WCOJ algorithm known as Generic Join algorithm, which
contains the core algorithmic steps needed to meet the AGM bound of



98 Worst-case Optimal Join Algorithms

queries under arbitrary queries. Then we cover the different approaches
that have implemented WCOJ algorithms in systems. We break these
approaches into two parts: (1) evaluation approaches for WCOJ-only
plans or sub-plans, where we primarily focus on the actual operators that
implement WCOJ algorithms in several implementations and several
optimizations for picking a good join attribute order (see Section 3.2);
(2) approaches that generate plans that combine binary join and WCOJ
operators.

3.2 AGM Bound and WCO “Generic Join” Algorithm

In this section, we provide some background on the foundations of
WCOJ algorithms. We begin by introducing the AGM bound of Atserias
et al. (2008) and then review a WCOJ algorithm known as “Generic
Join” algorithm. The section on AGM bound is very formal and can be
skipped by readers who are eager to learn about Generic Join.

3.2.1 AGM Bound

Let R = {R1, ..., Rn} be the set of relations in a query Q and A =
{a1, ..., am} be the set of attributes in the relations in R. Let x =
(xi)i∈{1,...,n} be a vector of values between [0, 1], one for each relation
Ri in Q such that the following m inequalities hold for each attribute
aj in Q:

∑
Ri∶aj∈Ri

xi ≥ 1

Such a vector is called a fractional edge cover. In other words, in
the hypergraph representation of the query, we give a value between
0 and 1 to each relation/hyperedge and ensure that every attribute is
“covered”. The AGM bound, proved by Atserias et al. (2008), is the
following inequality about the output size:

∣Q∣ ≤ Πxi∈x∣Ri∣xi

We refer readers to proofs of this bound by Ngo et al. (2013, Section
4.1) or the original proof by Atserias et al. (2008) for details. Therefore



3.2. AGM Bound and WCO “Generic Join” Algorithm 99

each fractional edge cover, along with the statistics about the sizes of
the relations Ri derives an upper bound on the maximum output size
of Q. Atserias et al. (2008) have also proved that the fractional edge
cover x∗ that achieves the lowest upper bound is asymptotically tight,
i.e., there exists a database instance D, whose relations have size ∣Ri∣
and the query output is of size Θ(Πxi∗∈x∗ ∣Ri∣x

∗
i ). When input relations

have the same size, e.g., in subgraph queries which are modeled as
self-joins over a single edge relation of a graph, the size of x∗ is called
the fractional edge cover number of Q and denoted by ρ∗. It has since
been common usage in literature to call this tightest upper bound for
Q as “the AGM bound of Q”. Henceforth, the AGM bound of Q should
be understood as referring to the ρ∗ of Q.

Example 3.1. Consider the triangle query Q∆. Let us assume the query
is running on an input graph, and let us represent the query as Q∆ ∶=
E1(a1, a2), E2(a2, a3), E3(a3, a1).1 Suppose each Ei has IN tuples and
represent the edges of a graph under the common scenario where the
Eis are copies of the same edge relation. Several example fractional
edge covers include (1, 1, 0), (1, 0, 1), (0, 1, 1) (recall the weights are
given to (E1, E2, E3)). For example, (1, 1, 0) is a cover because: (i) a1
is “covered” as a1 appears in E1 and E2 and their weights sum to more
than 1: 1 + 0 = 1 ≥ 1; (ii) a2 is covered because 1 + 1 = 2 ≥ 1; and (iii)
a3 is covered because 0 + 1 = 1 ≥ 1. Therefore each attribute is covered.
Using each of these fractional edge covers in the AGM bound gives an
upper bound of IN2. The tightest upper bound is achieved with the
fractional edge cover (1/2, 1/2, 1/2), which the reader can verify indeed
covers every attribute. Therefore, the fractional edge cover number ρ∗

of the triangle query is 3/2, so the maximum number of triangles that
can exist in a graph with IN edges is Θ(IN3/2).

One further observation made by Atserias et al. (2008) was that for
some cyclic queries, such as the triangle query, existing binary join plans
used in systems can generate polynomially more intermediate results
than the AGM bound of Q. Figure 3.1 shows an example database on

1Note that we used R(a, b), S(b, c), T (a, c) notation in an earlier section where
we wanted to give each edge a different color. We are changing the notation to
represent the more common case when the query is a self-join.



100 Worst-case Optimal Join Algorithms

which any binary join plan generates IN2 many intermediate tuples as
the reader can verify (in the example, the output size is Θ(IN)). This
highlights a possible sub-optimality of binary join plans on cyclic joins.
The algorithmic steps of how to fix this sub-optimality existed in the
original reference of Atserias et al. (2008): evaluate queries attribute at
a time instead of relation at a time.

The worst-case run time of the algorithm by Atserias et al. (2008)
did not tightly meet the AGM bound of queries. That algorithm ran
in time O(INρ∗+1). Several algorithms were later introduced that fixed
this sub-optimality, i.e., whose worst-case run times were asymptotically
bounded by the AGM bound of queries. These include the Leapfrog
TrieJoin by Veldhuizen (2012) and NPRR by Ngo et al. (2012). Perhaps
the simplest such algorithm is the Generic Join algorithm by Ngo et al.
(2013), which we cover in the next section. These algorithms are called
worst-case optimal join algorithms, as their worst-case runtimes are
optimal in the sense that the worst-case runtime of any join algorithm
to evaluate a query Q on input databases with relation sizes ∣Ri∣ is
asymptotically at least lower bounded by the AGM bound of Q. This
is true because the AGM bound is asymptotically tight. Therefore, any
algorithm has to take at least the AGM bound time on at least one
database instance just to write the output of query.

3.2.2 Generic Join WCOJ Algorithm

Given a query Q, we first fix a join attribute order (JAO), which is
the order in which partial joins will be computed. Without loss of
generality, assume the ordering J is a1, a2, ..., am. Further assume that
the relations are pre-indexed so that given bindings to a prefix p of the
(a1 = t1, ..., aj−1 = tj−1), if a relation Ri contains aj , using the index
on Ri we can obtain “extensions” of p to aj in Ri. Let us refer to
these extensions of p in Ri as Exti

j(p). For example, this can be done
simply by building a B+ tree index on Ri that follows the order of
attributes in J . As we will see later in this section, in some integrations
of WCOJ algorithms in systems, this pre-indexing step is omitted,
although algorithmically this is necessary for the runtime analyses of
WCOJ algorithms to meet the AGM bound.



3.3. Worst-case Optimal Join Only Plans 101

Given J and the necessary indices on the relations, the Generic Join
algorithm is given in Figure 3.3. The algorithm iteratively computes
partial matches P1, P2, ..., Pm, where Pj is the set of bindings found for
the first j attributes a1, ..., aj and is simply computed by taking each
prefix p ∈ Pj−1, and finding each extension set Exti

j to variable aj for p

from each relation Ri that contains aj and intersecting them. Note that
Pj can equivalently be seen as the output to sub-query Qj , where Qj

projects Q onto the first j attributes, i.e., ∏
a1,...,aj

Q. Ngo et al. (2013)

provide an inductive proof that proves that as long as the computation
satisfies an intersection property, ignoring logarithmic factors, the worst-
case runtime of Generic Join is asymptotically bounded by the AGM
bound of Q (again ignoring some logarithmic factors). The intersection
property requires that intersections of Exti

j take time linear in the size
of the smallest set that’s being intersected. This is a simple constraint
and can be achieved easily by standard intersection algorithms that use
binary-search like routines to skip over ranges of elements in sets that
need to be skipped during intersecting.2

P0={}
for (j = 1... m):

Pj={}
for (p ∈ Pj−1):

// ∩ below is performed starting from smallest Exti
j(p)

extp = ∩Exti
j(p)

Pj = Pj ∪ extp

Figure 3.3: Pseudocode of Generic Join.

3.3 Worst-case Optimal Join Only Plans

In this section we give overviews of the common approaches across
systems to implement WCOJ algorithms. We focus on the WCOJ plans

2Interestingly, many actual implementations of WCOJ algorithms that we are
aware of ignore this constraint in most cases and do simple in-tandem intersections,
because in-tandem intersections access memory sequentially, which performs well in
practice.



102 Worst-case Optimal Join Algorithms

or sub-plans of these systems and leave the coverage of how to mix these
sub-plans with binary join operators to the next section. For several of
these approaches, we will also discuss how to optimize the JAO of the
join computation. Given a JAO J the system has picked for a WCOJ
computation, each approach has two components:

1. JAO-consistent indices: The approach either maintains or builds
on the fly a set of indices that store the relations in a sorted order
consistent wit J for a query, i.e., if a relation R contains ai and
aj and ai comes before aj in J , then ai is earlier than aj as a sort
order in the index for J .

2. Operators for multiway intersections: The approach also needs to
implement operators or compiled functions that perform index
lookups and Generic Join-like multiway intersections.

We will cover these approaches, highlighting the pros and cons of
different approaches. We note that some of the approaches we cover
perform value-based joins while others are performing predefined joins.
Recall from Section 2 that predefined vs value-based categorization of
join algorithm implementations is orthogonal to the binary vs worst-case
optimal categorization.

3.3.1 LogicBlox: Tries and Iterator-based Execution

The first published implementation of a WCOJ algorithm is the Leapfrog
Triejoin (LFTJ) algorithm by Veldhuizen (2012). LFTJ is the core
join algorithm of the LogicBlox system (Aref et al., 2015). We will
start with explaining the implementation on the acyclic triangle Q∆
query E1(a1, a2) & E2(a2, a3) & E3(a1, a3) on the example database
shown in Figure 3.4. The implementation is based on indexing the
relations according to the JAO J , which we will take to be a2, a3, a1.
LogicBlox publications that describe LFTJ algorithm assume that
indices consistent with J already exist in the system.3 So it is not clear

3The implementation described by Aref et al. (2015) stores actual record values,
so the implementation is value-based though if joins are predefined to the system,
one can easily index RIDs in these indices and implement a predefined version of
LogicBlox’s approach.



3.3. Worst-case Optimal Join Only Plans 103

Figure 3.4: Example database of edge relations in both graph and tabular
representations.

Figure 3.5: Trie indices used by LFTJ corresponding to each relation in Q∆. JAO
is {a2, a3, a1}.

if these indices incur the cost of sorting on the fly but we know from
Veldhuizen (2012) that the index used is a B+ tree. For the J in our
running example, the indices would be ordered as shown in Figure 3.5.

LogicBlox’s implementation has an iterator interface to the indices
with two functions, next() and seek(key). Then, the algorithm will
perform a sequence of “Leapfrog joins”, which are equivalent to one
attribute extensions of Pj−1 to Pj . For Q∆, the three Leapfrog joins
for our chosen J in Datalog syntax would be: (i) E1(_, a2), E2(a2, _);
(ii) E2a2

(a3), E3(a3, _); and (iii) E1a2
(a1), E3a3

(a1). Here E1(_, a2)
and E2(a2, _) are the set of a2 values in these relations (similarly for
E3(a3, _)). Eiak

(at), is the set of at values for a specific ak value in Ei.
The implementation is recursive and based on performing intersections
using a sequence of seek() calls to the set of iterators at each level of
the recursion.

In our example, this is done as follows. At depth 0, the algorithm
has 2 iterators over the indices E1 and E2, which iterate through the
a2 values in these indices by making a sequence of seek() calls to find



104 Worst-case Optimal Join Algorithms

common values across the indices. Figure 3.6 shows the pseudocode of the
computation at each recursive depth implemented in a function called
LFTH-Intersect(). The code assumes that there is an allIters array
of arrays that contains the iterators of each recursive depth. At depth 0,
this computation takes the intersection of E1(,a2), E2(a2, _) through
seek() calls that execute until a common value across all iterators is
found or one of the iterators reaches its end. The sets of values these
iterators iterate over are drawn inside black boxes in Figure 3.5. As soon
as the first intersection value is found, which in our example would be
(a2=2), the recursion goes to the next depth (LFTH-Intersect(d+1)
call in Figure 3.5).

Input: depth d;
Output: bind a single value to aj, where aj is the

dth variable in the JAO.
LFTJ-Intersect(d):
// Assume allIters contains the iterators at each depth
iters=allIters[d]
for iter in iters:

iter.init() // move iters to their first keys
iter.sort() // sort iters on their keys.

max = iters[|iters|-1].key() // max key
ℓ = 0
while true:

min = iter[ℓ].key() // min key
if (min = max):

a_j=min // found an intersection
if (d < maxDepth):

LFTJ-Intersect(d+1) // move to the next iteration
else: output tuple // computed a successful join tuple

else:
iters[ℓ].seek(max)
if iters[ℓ].atEnd(): return;
else:

max = iters[ℓ]
ℓ++

Figure 3.6: Pseudocode of LFTJ implementation at one depth.

At the next depth, two new iterators are initialized. First is initialized
to E2’s second level below a2 = 2. This iterator iterates over a single



3.3. Worst-case Optimal Join Only Plans 105

value, since a2 = 2 contains a single child in E2’s trie. Second is initialized
to E3’s first level which contains 0 and 2 values. The sets of values of
these iterators are drawn inside red boxes with long dashes in Figure 3.5.
The LFTJ-Intersect() code binds a3 = 0 and moves to the next depth,
where the 2nd level iterator of E1 (under a2 = 2 and 2nd level iterator
of E3 (under a3 = 0) are intersected to produce outputs.

We end this subsection with a few observations. First, the seek()
calls to the iterators described in Figure 3.6 automatically satisfy the
intersection property. As we will see later, some other implementations
inspect the sizes of sets of values to start intersections from the smallest
set. Second, the papers on LeapfrogTrieJoin do not cover how the system
picks a JAO for a query but acknowledge the importance of this choice
for performance. We will discuss this more in the rest of this section.

3.3.2 Umbra: On-the-Fly Hash Tries and Iterator-based Execution

Umbra’s implementation of WCOJ sub-plans by Freitag et al. (2020)
is similar to LFTJ. Umbra has a rule-based approach, which will be
discussed momentarily, that transforms the system’s binary join plans
into those that contains WCOJ sub-plans. We first briefly discuss the
computation that is performed in Umbra’s WCOJ operator. In this
operator4 a LFTJ-like computation is performed using “hash tries”
instead of sorted tries. Hash trie data structure of Umbra is a set of
nested hash tables that store the hashes of the values in tuples (instead
of the actual values). The rationale for this is that comparison of actual
values can be expensive especially if the keys are variable length in size
and can be replaced by lookups in hash tables. Additionally, storing
the actual values in the indices increases the memory footprint and
decreases the cache performance when iterating over indices.

Figure 3.7 shows an example hash trie for E1 and E2 for the JAO J

{a2, a3, a1}. The top level of these tries contain the hashes of the first
attribute in the relation according to the given JAO (sorted according
to the hashes). For example, E2’s hash trie stores the hash of each a2

4Umbra compiles queries to executable code, so there are no “operators” as in
traditional DBMSs. The computation described here is part of the compiled code for
a plan.



106 Worst-case Optimal Join Algorithms

Figure 3.7: Hash trie indices used by Umbra corresponding to E1 and E2 in Q∆.
JAO is {a2, a3, a1}.

value in E2 and not the actual values. Each of these hash values has a
pointer to second level hash tables. The second level hash tables also
store the second attribute in the JAO for the given prefix of values. For
example, the leftmost hash table for a3 hashes the a3 value of every
tuple in E2 whose a2 hash value equals h(4) (which is 4’s hash value).
In the example there is only one such tuple (a2 = 4, a3 = 0). Therefore
this hash table contains a single hash value. In contrast, the right most
hash value at that level contains hashes of a3 value of tuples whose a2
values hash to h(1) or h(2) (note that there is a hash clash for h(1) and
h(2) at the first level). There are three such tuples: (a2 = 1, a3 = 0),
(a2 = 2, a3 = 0), (a2 = 1, a3 = 2). Therefore this hash table will store the
hashes of 0 and 2, which are two distinct a3 values in these three tuples.

The last-level hash tables point to the actual tuples. Given that
there may be some hash collisions in upper layers, a hash value from
the last-level hash table may need to point to multiple tuples, which is
done by chaining some tuples in this layer. For example, in our case,
the tuples (a2 = 1, a3 = 0), (a2 = 2, a3 = 0) follow the same set of chains
in the hash trie for E2, so (1,0) in the last level points to (2,0) (and
there are no pointers directly to (2,0) from the last-level hash tables).

The use of hash tries requires some modifications to the LFTJ imple-
mentation of LogicBlox. At each level of the recursion, the computation
initializes iterators similar to LFTJ (recall Figure 3.6). Then the hash
table with the fewest hash values, say Hmin will be identified, and the
computation will iterate over the values in Hmin. Then, each hash value
in Hmin will be looked up in the rest of the hash tables that are being
iterated over. If the same hash value is found in all other hash tables,
then the next recursive call will be made (also Volcano style). In the



3.3. Worst-case Optimal Join Only Plans 107

last level of the recursion, sets of tuples from each relation from the last
levels of the index of each relation in Q, and the final key comparisons
are made to ensure tuples that indeed match on their common attributes
are kept and tuples whose values do not match (but the hashes of these
values match) are removed.

For example, in our running example we assumed that there was
a collision of h(1) and h(2). Let us call this hash value h∗. Consider
these combination of hash values: (a1=h∗, a2=h∗), (a2=h∗, a3=h(0)),
(a1=h∗, a3=h(0)). Umbra’s LFTJ computation will generate 4 possible,
not necessarily actual, triangles for these hash values. When iterating
over the E1 index, only the (a1=2, a2=1) tuple is extracted as there
is no tuple with a2=2 in this relation, so the collision does not lead
to getting additional tuples. From E2, (a2=1, a3=0) and (a2=2, a3=0)
will be extracted by following the red pointer at the last level in the
index. Similarly from E3, whose index is omitted, (a1=1, a3=0) and
(a1=2, a3=0) will be extracted. Out of these 4 combinations only (a1=2,
a2=1), (a2=1, a3=0), and (a1=2, a3=0) form a triangle and the other
3 are false positives and will be eliminated at the last verification stage
of the algorithm.

3.3.3 Graphflow: Pre-Sorted Adjacency Lists and Extend-like Join
Operators

Graphflow (Mhedhbi et al., 2021) is an in-memory GDBMS that can
generate plans with WCOJ computations. Graphflow performs its joins
over one or more Edge relations in the system, which contain the source
and destination node record IDs (RIDs) in the system. Therefore, all
joins in the system are predefined and based on RIDs. In this section
we will assume that there is a single Edge relation in the system for
simplicity. In Graphflow, this relation is indexed twice as a forward
and a backward “adjacency list” index. Further, the system keeps each
adjacency list in already sorted order of their neighbor node IDs. One
advantage GDBMSs have is that the Edge relation is binary. Therefore,
storing 2 pre-sorted indices is all that is needed to be able to generate
any JAO for any (self-) join query over Edge relation (but not for
arbitrary joins). Therefore, for these join queries no indices need to be
built on the fly to perform a Generic Join-like computation.



108 Worst-case Optimal Join Algorithms

Graphflow’s WCOJ sub-plans are very simple and consist of: (i) a
Scan operator that scans the Edge relation and binds each (src, dst) tuple
to the first two attributes in the JAO, i.e., computes partial matches P2
in our pseudocode of Generic Join in Figure 3.3; and (ii) a sequence of
Extend/Intersect operators that each extend a previous set of partial
matches to the next attribute in the given JAO starting from P3, ...,
Pm. Figure 3.8a shows the Graphflow plan for Q∆ according to JAO
a2, a3, a1. In terms of the query processor architecture, Graphflow’s
query processor is Volcano-style, where parent operators pull tuples
from child operators. The intermediate tuples are pulled in the form of
factorized vectors, which will be covered in Section 4 on factorization.
Here, readers can assume that single flat tuples are passed between
operators.

(a) Graphflow plan.

(b) Kùzu plan.

Figure 3.8: Example Graphflow and Kùzu plans for Q∆ for the JAO a2, a3, a1.
Intersect is short for the Extend/Intersect operator in the Graphflow plan.



3.3. Worst-case Optimal Join Only Plans 109

Consider an Extend/Intersect operator that will extend partial
matches Pj−1 to Pj . For each tuple t that the operator receives, the
operator accesses one or more adjacency lists (forward or backward) from
the adjacency list index and intersects them to compute an extension
set S = {s1, s2, ..., sℓ} (if there is a single adjacency list, this operation
is a simple extension). Then for each sk, the operator produces one new
tuple that’s passed to the next operator by appending aj = sk to t. As an
example, consider the plan in Figure 3.8a, where the Scan operator scans
each edge in the input graph and binds to an (a2, a3) tuple. For each edge,
say, (a2 = 2, a3 = 0), given that Q∆ contains relations E1(a1, a2) and
E3(a1, a3), the operator needs to access: (i) the backward adjacency list
of node 2 to read E1(a1, a2 = 2)={1}; and (ii) the backward adjacency
list of node 0 to read E3(a1, a3 = 0)={1, 2, ..., 2k}. This intersection
would return S={1} and lead to outputting the triangle (a1=1, a2=2,
a3=0).

We discuss several implementation details of Graphflow’s plans.
First, Graphflow’s plans avoid any intersections when binding the first
two variables in the JAO. In practice, this may be an advantage or a
disadvantage. For example, in our running example and the plan in Fig-
ure 3.8a, Graphflow’s Extend/Intersect operator will get each edge in
the graph from the Scan operator (so a total 2k+1 intermediate results)
and try to perform intersections on each one. Instead, both LogicBlox’s
and Umbra’s implementations would have intersected E1(_, a2) and
E2(a2, _) to bind the a2’s. This only returns 2, which would then be
extended only to a single tuple (a2=2, a3=0). In contrast, there is also
an important advantage because the first levels of the trie indices over
relations can be large, so avoiding intersecting them can be beneficial.
This observation will also motivate the FreeJoin work by Wang et al.
(2023) that unifies WCOJs and binary joins. We will cover FreeJoin in
Section 3.5. Second, Graphflow’s intersections are performed by simple
in tandem intersections. When more than two lists are being intersected,
the operator performs a sequence of pairwise intersections. The first
intersection intersects the smallest list with another list, the result of
which is intersected with the next list, so on and so forth.

The primary focus of the papers on Graphflow’s implementation
of WCOJs is on how to pick a good JAO for a query and how to mix



110 Worst-case Optimal Join Algorithms

the WCOJ-only sub-plans of the system with binary join operators to
obtain bushy plans. We will discuss bushy plans later. Here we discuss
the system’s approach to picking a JAO for WCOJ-only sub-plans. This
is based on enumerating all possible JAOs5 and estimating the cost of
each using a cost metric called intersection cost, which is defined as
follows:

∑
Pj–1∈P2...Pm−1

∑
t∈Pj–1

∑
adj intersected

to extend t

∣adj∣ (3.1)

The inner two summations model the expected sizes of the adjacency
lists that will be intersected when extending each tuple t ∈ Pj−1 to Pj .
The outer summation loops over each set of partial matches. In summary,
the intersection cost of a plan is the total sizes of the adjacency lists
that will be intersected in the Extend/Intersect operators of the plan.

This cost-metric captures two important observations. First is that
different JAOs for the same query can yield different intermediate results
and therefore runtimes. This is expected and is captured in the i-cost
formula which loops over each expected intermediate tuple. Second two
plans that generate exactly the same number of intermediate results may
still yield different runtimes for intersecting adjacency lists in different
directions. For example, consider the JAO a1, a2, a3. A Graphflow plan
for this will scan each edge E(u, v) in the input graph as before and
intersect u’s forward adjacency list with v’s forward adjacency list. Recall
that the plan in Figure 3.8a intersected the backward adjacency list of
both u and v. In practice, because the distributions of backwards and
forward adjacency lists can be very different, this can make an important
difference (Mhedhbi and Salihoglu, 2019) reports 12.1x difference on a
microbenchmark experiment on Q∆ on a small web graph). For example
on social networks, backward adjacency lists can be much larger than
forward ones. A classic example is that on the Twitter network, popular
users can have tens of millions of followers (e.g., Donald Trump) yet users
will tend to follow at most tens of thousands of other accounts. Suppose,
the Donald Trump node, DT has 60 million incoming edges. Consider

5When enumerating all JAOs is prohibitive, Graphflow falls back to a greedy
approach (Mhedhbi and Salihoglu, 2019).



3.3. Worst-case Optimal Join Only Plans 111

running the vanilla Q∆ query on the plan from Figure 3.8a. Then, for 60
million (u, DT ) edges, the plan would execute an intersection where one
of the lists would be of size 60 million. This is possibly a very expensive
computation even if the costs of intersections are commensurate with
the size of smaller lists, considering possible data copies that would be
performed in the query processor and the CPU caching effects while
performing these intersections. Intersecting forward lists can avoid this
phenomenon.

Finally, Graphflow estimates the sizes of sub-queries/sub-graphs
using a cardinality estimation technique based on using a subgraph cata-
logue. We omit details here and refer the reader to the paper by Mhedhbi
and Salihoglu (2019). Briefly, this catalogue stores estimates for the
cardinalities of small size subgraphs, e.g., two-paths, asymmetric and
symmetric triangles, and different possible extensions of these subgraphs
to larger graphs, and each extension estimates the sizes of the adjacency
lists that would be intersected. As the system enumerates different
JAOs, the catalogue is consulted to compute the i-costs of different
plans.

3.3.4 Kùzu: On-the-fly Sorted Adjacency Lists and HashJoin Op-
erators

Kùzu is another GDBMS and the successor of Graphflow developed in
the same research group at University of Waterloo. Similar to Graphflow,
Kùzu also performs predefined joins and has a join index that stores the
RIDs of node records. However, in contrast to Graphflow’s in-memory
architecture, Kùzu stores its join index on disk and in an unsorted
manner. Recall from Section 2 that Extend/Intersect-like operators,
which access the index for each tuple, can be very inefficient and lead to
random I/Os if the index is managed on disk. To avoid this, Kùzu has
a multi-way HashJoin operator called ASPJoin that ensures that each
relation is scanned sequentially and only once. Further, the adjacency
lists in the indices are not sorted in Kùzu, so before intersecting, these
lists need to be sorted. In our coverage of Kùzu’s implementation, we
omit the planning part of queries, which is based on similar cost-based
ideas from Graphflow. Instead, we focus on the core join operator that
performs WCOJ-style multiway intersections.



112 Worst-case Optimal Join Algorithms

Kùzu has several variants of ASPJoin. We cover one variant here
and refer the readers to the paper by Feng et al. (2023) for more details.
ASPJoin takes as input a relation Pj−1 and ℓ many binary relations that
will be used to extend Pj−1 partial matches to Pj partial matches to
extend by a single attribute. Similar to regular hash join algorithm the
computation is broken into two phases:
● Build phase: The operator scans the adjacency lists corresponding

to each of the ℓ “build relations” and forms ℓ many hash tables. For
each hash table, the key is an attribute that exists in the tuples in
Pj−1 and values are the sorted list of aj values. The sorting is done
on the fly. After each hash table is created, the key values in the hash
tables are passed down as a semijoin filter to the probe side.
● Probe phase: Then the tuples in Pj−1 are scanned and for each tuple

t, one sorted list from each hash table is looked up and intersected to
produce a set of extensions of t.
An example Kùzu plan using an ASPJoin operator is shown in

Figure 3.8b according to our example JAO. The execution is performed
as follows:
● Build phase: First the backward adjacency lists index is used to

scan (a2, a1) tuples and a Hash Table 1 is built. Note that the parent
ASPJoin will use this index to probe the extensions of a2 values to
a1 values. Therefore, in Hash Table 1, a2 is the key and values are
the set sorted a1’s. Next, a Hash Table 2 that hashes a3 values to a
set of a1 values is built.6

● Sideways semijoin filter passing: Recall from Section 2 that Kùzu
has a sideways information passing optimization to avoid scanning
parts of adjacency list indices that are guaranteed not to successfully
participate in the join. After the build phase, the system knows from
Hash Table 1 that only a2 values with 0 and 2 need to be scanned in
the probe phase, which will scan (a2, a3) tuples. This information is
passed sideways to the probe phase in the form of a semijoin filter.
● Probe phase: The computation first scans the forward adjacency

lists of node 0 and 2 and each scanned (a2, a3) tuple is extended to

6As readers will observe, in our example these hash tables are identical, so in an
optimized implementation this creation of Hash Table 2 can be completely avoided.



3.3. Worst-case Optimal Join Only Plans 113

a1 values as follows. Next, two lookups are made in Hash Tables 1
and 2, respectively with keys a2 = 0 and a3 = 2, and two sets of a1
values are obtained. Finally, these two sets are intersected to produce
(a1, a2, a3) tuples.

3.3.5 CTJ: Caching of Common Extensions

During vanilla WCOJ plan evaluation, the same intersections can be
computed multiple times. Consider the query Q∆⋆ shown in Figure 3.9a.
The query has a triangle in the middle and three edges coming into or
out of each query node in the triangle. To simplify our presentation,
different query edges have different colors. We consider a database with
four different types of relations, blue small-dashed edges S, black edges
T1, T2 and T3, red long-dashed edges U , and green dotted edges W . The
query can be expressed in our syntax as S(a1, a2), T1(a2, a3), T2(a3, a4),
T3(a4, a2), U(a3, a5), W (a4, a6). Consider running Generic Join on the
JAO a1, a2, a3, a4, a5, a6 on the database shown in Figure 3.9b. The
database contains k − 1 triangles (0, 1, 3), (0, 1, 5) ..., (0, 1, 2k − 1). 0
has k incoming blue small-dashed edges. Nodes 1, 3, ..., 2k−1 each have
k outgoing red and k outgoing green edges. Note that when executing
Generic Join, for each of the blue edges matching (a1=2j, a2=0), the
same set of k-1 triangles will be computed to bind to a3 and a4. Similarly
for each triangle that is computed, say (a2=0, a3=1, a4=3), and each
extension of a3=1 to the red nodes to bind to a5, the same set of
extensions to the green nodes will be made when binding a6. Therefore,
in a vanilla evaluation of Generic Join there will be many repeated
computations. In the rest of this section (covering CTJ and binary join
plans) and the next section (covering factorization), the techniques we
cover can be seen as different techniques that aims to avoid such repeated
computations.

CTJ’s approach for avoiding repeated the computation is to put
caches in different depths of the recursion of LFTJ. Specifically, after
binding certain values to a1, ..., aj , CTJ caches and reuses a subset of
the bindings for aj+1, aj+2, ... for a given set of keys that are bound to
a1, ..., aj . To decide the set of key and value attributes, CTJ generates
tree decompositions (TDs), which are a specific type of bushy plans.



114 Worst-case Optimal Join Algorithms

(a) Q∆⋆ query. (b) Example database.

Figure 3.9: Example query and database for the two triangles query Q∆⋆.

Formally, a TD of a query Q(A) = R1(A1), ..., Rm(Am) is a rooted tree,
whose nodes are called bags, and is assigned a set of attributes that
satisfies two properties:

1. Each relation’s attributes must be fully assigned to some bag.

2. For any attribute ai, the sub-tree of bags that contain ai must be
connected (also called the running intersection or connectedness
property).

Each bag of a TD represent the projection of Q into a set of attributes.
An example TD for Q∆⋆ is shown in Figure 3.10a with four bags.
For example Bag1 represents just S, Bag2, which is ∏

a2,a3,a4

Q, repre-

sents the join of T1(a2, a3), T2(a3, a4), and T3(a4, a2), Bag3 represents
U , and Bag4 represents W .7 Recall from Section 3.1 that in query
decompositions, if one models each bag as a relation, the entire decom-
position represents an acyclic join query over the “bag relations”. In
other words, the query Bag1(a1, a2) & Bag2(a2, a3, a4) & Bag3(a3, a5)
& Bag4(a4, a6) is equivalent to Q∆⋆.

7Another type of decomposition generalized hypertree decompositions makes
this connection to bags more concrete by also assigning relationships to the bags.
This will be covered momentarily when we discuss the EmptyHeaded system.



3.3. Worst-case Optimal Join Only Plans 115

(a) TD (b) GHD

Figure 3.10: Example TD and GHD for Q∆⋆.

Consider a left-deep binary join plan on the bag relations:
(((Bag1(a1, a2) & Bag2(a2, a3, a4)) & Bag3(a3, a5)) & Bag4(a4, a6)).
Then consider running the inner-most join (Bag1(a1, a2) &
Bag2(a2, a3, a4)). Then one can interpret the bags as caching common
computations within the binary join plan. For example, the inner-most
join (Bag1(a1, a2) & Bag2(a2, a3, a4)) is equivalent to joining S(a1, a2),
T1(a2, a3), T2(a3, a4), T3(a4, a2). The Bag1(a1, a2) & Bag2(a2, a3, a4)
join can be interpreted as caching for each a2 = x the output of the
T1(a2 = x, a3), T2(a3, a4), T3(a4, a2 = x) join, instead of computing this
multiple times for each a2 = x value.8 However to benefit from such
repeated common computations using TDs, one has to fully materialize
each bag of TD, which may be superlinear in size. How can we benefit
from repeated computations without incurring such memory costs? CTJ
addresses this question in the context of WCOJ algorithms.

CTJ assumes that a “good” TD has been picked by a system and
uses the TD to pick a JAO that can benefit from caching.9 At a high-
level and simplified for ease of presentation, the JAO is computed as
follows. A preorder traversal of the TD from its root is done and as each
bag is visited, each attribute of the bag that has not yet been listed
is listed in some order (or using some heuristic). In our example, the

8The same intuition applies in general to any bushy join plan.
9The issue of picking a “good TD” will be discussed later when we discuss the

EmptyHeaded system later.



116 Worst-case Optimal Join Algorithms

preorder traversal would list the root, and suppose we list its attributes
in the order a1, a2. Then we visit the child of the root, and list the two
“uncovered” attributes a3, a4 in some order. We call these the attributes
owned by the bags. Any attribute that is not owned by a bag is an
intersection attribute with the parent of the bag. Then we visit the left
grandchild of the root and list a5 and finally visit the right grandchild
and list a6. Then at each non-root bag B, there is cache whose key is
the intersection attributes with the parent and the values are the set
of attributes that were owned by B. In our example, there would be a
cache in the child of the root that stores a3, a4 values keyed by a2 values.
The intuition is that following JAO a1, a2, a3, a4, a5, a6, at the 3rd level
of GJ, i.e., after having computed a1, a2 values, the set of a3, a4 values
that are computed are independent of the a1 values and only depend
on a2. Therefore, we can cache and reuse them. Similarly there would
be two other caches for the left and right grandchildren nodes of the
root. For example, for the left grandchild the key would be a3 and the
value attribute would be a5.

Given the JAO and the choice of caches, CTJ runs LFTJ except
before enumerating certain sequences of variables checks some of its
caches to see if parts of the computation can be skipped. In our example,
CTJ’s LFTJ code would start computing a1 = 2, a2 = 0 and then move
on to computing the k-1 triangles in Figure 3.9b that have the form
of a2 = 0, a3 = 1, a4 = 2j + 1, for j=2,...,k-1. Then these would be
put into the cache with key a2 = 0. When the recursion unrolls to
enumerate a1 = 4, a2 = 0, since the cache contains key a2 = 0, the set of
a3 = 1, a4 = 2j + 1 are directly enumerated without calling the next two
levels of the recursion.10

Kalinsky et al. (2017) describes CTJ as a general approach to
enhance LFTJ with caching. It takes as input different TDs and different
caching policies. Therefore the caches do not need to be able to store all

10Readers may observe that in fact one could cache for a2 = 0 the bindings of the
rest of all attributes, a3, a4, a5, a6, since all of these attributes are independent of
a1 once a2 is fixed. The theory of factorization (Section 4) builds a more complete
way of exploiting such conditional independences between attributes in queries to
avoid repeated computations. Using techniques of factorization, one would cache the
entire sub-tree under the root.



3.4. Mixing With Binary Joins 117

intermediate results for the sub-queries they cache. If a system cannot
keep these sub-queries entirely, an eviction policy can ensure keeping
these relations partially and recomputing parts of them when needed.

3.4 Mixing With Binary Joins

In this section we review approaches from literature that generate
plans that mix traditional binary join operators with WCOJ sub-plans.
As mentioned above, both CTJ’s enhancement of LFTJ and bushy
plans are different approaches that achieve the similar goals of avoid-
ing re-computation of certain sub-queries.11 For example, in the Q∆⋆
example, the benefit obtained by CTJ for caching and reusing the
computation of triangles would be achieved by a bushy plan that has
a top HashJoin operator with two branches (ignoring the rest of the
query): (i) left sub-tree that joins BD(a1, a2); and (ii) right sub-tree
that joins B1(a2, a3), B2(a3, a4), B3(a4, a2). Suppose the right sub-tree
is the build side. In this case, the triangles would be computed once in
the right sub-tree and cached in a hash table and for each scanned BD

tuple (a1 = 2j, 0) for j=1,...,k, from the left sub-tree, this computation
would be reused.

3.4.1 EmptyHeaded: Tree decompositions

EmptyHeaded by Aberger et al. (2017) was the first system implemen-
tation that described an approach of generating plans that mix both
binary join operators and WCOJ computations. EmptyHeaded is a
prototype system that stores and evaluates join queries on arbitrary
relations. EmptyHeaded’s plan generation is solely based on a specific
form of TDs called generalized hypertree decompositions (GHDs). GHDs
are extended TDs, where each bag is also assigned a set of relations
and has an additional constraint that each variable assigned to each
bag must also appear in some relation assigned to that bag. For our
goals, the formal details of GHDs will not be important. The GHD

11In fact, as we will see, the technique of factorization that we will cover in
Section 4 also achieves the same goal yet it also is a compression technique so offers
additional benefits.



118 Worst-case Optimal Join Algorithms

corresponding to the TD that we used for Q∆⋆ is shown in Figure 3.10b.
Instead, EmptyHeaded has a specific interpretation of a GHD D as
bushy plans as follows:

(i) First, the relations assigned to each bag are joined and materialized
into an intermediate relation using Generic Join. EmptyHeaded does
not propose a way to order the JAO within each bag. So, the choice
of JAO is arbitrary. For each child bag Bagc, EH materializes a
relation. Let us call this relation also as Bagc. Bagc is indexed by
the intersection attributes that Bagc has with its parent Bagp (if
any). For example, Bag3 in Figure 3.10b would be indexed by a3.

(ii) Second phase is to run Yannakakis’s algorithm. Each child bag Bagc

passes to its parent Bagc the projection of itself onto the intersection
attributes of Bagc with Bagp. Then in a top-to-bottom phase, the
GHD D is traversed in pre-order fashion and each parent’s tuples
are joined with its children relations, using the indexes created over
the materialized relations of its children.
EmptyHeaded’s approach to picking a GHD is based on picking

one of the GHDs for Q with the minimum generalized hypertree width
(ghw). Ghw is a number that characterizes the largest AGM bound of
an intermediate relation, i.e. bag, in a GHD D. In other words, it tries
to capture how large will be the largest intermediate result if a query
was decomposed using D. If we assume for simplicity that each relation
has IN many tuples, the total runtime of using D in EmptyHeaded’s
approach can be upper bounded by O(INDghw +OUT), where Dghw is
the ghw of D. This is a query-only approach cost-metric that only uses
the number of tuples in relations as a statistic when picking a plan.
GHDs with the minimum width guarantee that the worst-case runtime
over the plan is asymptotically minimized (given that Yannankakis’s
algorithm is used in the binary join phase).

However, this style of approach also has several shortcomings. First,
finding the GHD with the minimum width is NP-hard. However, the
complexity parameters here is on the number of attributes and relations
in the query and independent of the database. So if we assume that in
practice many queries are small, this may not be a major performance
bottleneck. Yet, it still deviates from the standard join optimizers in



3.4. Mixing With Binary Joins 119

systems which are based on dynamic programming. This makes it
challenging to integrate into existing systems. Second, EmptyHeaded
leaves the picking of JAO in the first phase of the algorithm undefined.
Finally, these plans are limited to performing a sequence of binary joins
after performing WCOJ-like intersections. That is these plans cannot
generate a plan that uses WCOJ-like intersections after performing
binary joins, which may be beneficial on some complex queries. Some of
these shortcomings have motivated the next approach of mixing binary
and WCOJ operators that was developed in the Graphflow system.

3.4.2 Graphflow/Kùzu: Cost-based Mixed Dynamic Programming
Join Plan Enumeration

Graphflow and its successor Kùzu adopt the common approach of
using dynamic programming (DP) cost-based optimization to pick
a join plan. At each iteration j of the DP optimization, DP-based
optimizers compute for each connected sub-query Qj that contains j

relations the best plan Pj using best plans for two sub-queries that
respectively contain i and j − i many relations. In contrast, Graphflow’s
optimizer at iteration j enumerates plans for sub-queries that contain j

attributes/query vertices. For queries with 2 attributes, the optimizer
only enumerates plans that scan base Edge relations. When iterating a
plan for a sub-query Qj with j > 2 attributes, the optimizer considers
two different sets of options:
● Appending an Extend/Intersect: The optimizer picks the best

found plan P ∗j−1 for a sub-query Qj−1 and append an Extend/Inter-
sect operator to P ∗j−1 that extends it by one query vertex aj . Suppose
there are t many query edges that contain aj and whose other query
vertex is in Qj−1. Then, the Extend/Intersect operator performs a
multiway join of t relations.
● Appending a HashJoin: Pick the best plans P ∗c1 and P ∗c2 for two sub-

queries Qc1 and Qc2 whose binary join would compute Qj . Append
a HashJoin operator as the root of a new plan that has Pc1 on one
side and Pc2 on the other side.

Therefore, for each Qj , the optimizer enumerates both the best plan
whose last operator is a WCOJ-like operator as well as the best plan



120 Worst-case Optimal Join Algorithms

whose last operator is binary join operator. The optimizer then picks
the better of these two. The system adopts the i-cost metric from Sec-
tion 3.3.3 for Extend/Intersect operators and a separate metric that
estimates the cost of HashJoin. Importantly, both i-cost and HashJoin’s
cost estimate number of tuples that operators process. Therefore, unlike
EmptyHeaded’s GHD-based optimization, Graphflow’s optimizer is not
agnostic to the statistics about the underlying database.

Further, this approach can generate a larger set of plans that seam-
lessly mix binary joins and WCOJ plans. That is, there is no restrictions
that first some WCOJ-only sub-plans will execute and then a set of
binary joins. For example, consider the plan in Figure 3.11, which has
an Extend/Intersect as the top operator and comes after a HashJoin.
Such plans cannot exist in GHD-based plans, where binary join operators
are performed completely after each bag is computed, which is where a
WCOJ algorithm is used. As shown by Mhedhbi and Salihoglu (2019),
in some queries, such plans can be more performant than GHD-based
ones. On that other hand, Graphflow’s simple extension of existing
DP-based optimizers assumes that best plans for smaller sub-queries
can be re-used to generate best plans for larger sub-queries. Mhedhbi
and Salihoglu (2019) argues that this assumption is not necessarily true
when enumerating WCOJ-only plans.

3.4.3 Umbra: Rule-based Binary Join Plan Modification

Unlike EmptyHeaded and Graphflow, Umbra has a rule-based approach
for generating plans that mix binary joins and LFTJ computation. The
rule is very simple. The system first optimizes a binary join-only plan P .
Then it traverses the plan to detect a “growing” binary join operator o.
o is growing if its expected output cardinality is larger than the larger
of its two inputs oℓ, or. Such operators are removed and its two children
are merged into o’s parent, which becomes a multiway join operator.
A multiway join operator is then compiled into hash trie-based LFTJ
implementation that we described in Section 3.3.2.



3.5. FreeJoin: Rule-based Binary Join Plan Modification 121

Sink

Intersect
(a2←a6,a5←a6)

HashJoin on
a3

Intersect
(a1←a3,a2→a3)

Intersect
(a4←a3,a5→a3)

Scan Edges
(a1→a2)

Scan Edges
(a4→a5)

Figure 3.11: An example Graphflow plan that seamlessly mixes binary and WCOJ-
like multiway intersection computations. This figure is based on a figure from Mhedhbi
and Salihoglu (2019).

3.5 FreeJoin: Rule-based Binary Join Plan Modification

We next briefly cover FreeJoin by Wang et al. (2023), which is an ap-
proach to unify left-deep binary join operations that perform joins one
relation at a time, with WCOJ algorithms that perform joins one at-
tribute at a time. FreeJoin is motivated by the observation that WCOJ
algorithms do not have a major difference from left-deep binary join
(LDBJ) plans on acyclic queries. This is because on acyclic queries,
WCOJ algorithms extend tuples by probing into one trie index after
another, akin to using a sequence of index nested loop binary join
operators. Further, a primary performance bottleneck in using WCOJ
algorithms is the requirement to build indices over every relation. There-
fore, one can also argue that WCOJ algorithms have a disadvantage over
LDBJ plans. This is because in LDBJ plans that use hash joins, hash
indices are built only on the smaller relations. The largest relation is left
as the probe relation and is not indexed. In contrast, WCOJ algorithms
also have an advantage over LDBJ plans. Specifically, WCOJ algorithms
bind values to an attribute aj if that value exists in all relations that



122 Worst-case Optimal Join Algorithms

contain aj . In contrast, LDBJ plans can assign bindings to an attribute
aj using one relation only to detect later that those binding values
do not exist in another relation that contains aj . For example, recall
that in the motivating example Qδ we used for WCOJ algorithms, any
binary join plan first computes open triangles and then try to close
them. As we discussed, this can result in binary join plans generating
large intermediate results.

We present a running example from Wang et al. (2023) to demon-
strate the pros and cons of both approaches on the 3-star query
Q3⋆(x, a, b, c) ∶ R(x.a), S(x, b), T (x, c). Figures 3.12a and 3.12b show,
respectively, the computation of a left-deep binary join plan and a
WCOJ plan as in pseudocode form. In the code R[x]? indicate a lookup
into relation R for a specific x value and if the value is not found,
continues to the next iteration of the outer for loop. Assuming that
indices over S and T are built, a LDBJ plan would read an (x, a) tuple
from R and join it with tuples in S on x to generate (x, a, b)’s and
then join those again on x with T tuples to produce outputs. However
if a particular value v that binds to x does not appear in T, then
this computation would still unnecessarily join (x = v, a) tuples with
tuples in S. WCOJ algorithms avoid such unnecessary computations.
Figure 3.12b shows the WCOJ code for this query. Instead of directly
enumerating (x, a) tuples from R, the code first enumerates an x value
in R, then does initial lookups in S and T for that x value, and then
outputs the a’s, b’s, and c’s from each relation. However, to do this, the
algorithm needs to incur the cost of indexing the largest relation R.

(a) FJ binary join plan. (b) FJ WCOJ plan. (c) FJ alternative plan.

Figure 3.12: Three different FreeJoin plans for Q3⋆.

Wang et al. (2023) observe that other computations are possible
between these two alternatives, such as the algorithm in Figure 3.12c.



3.6. Other Work and Open Problems 123

In this case, R is not indexed and (x, a) tuples in R are directly
enumerated. Then the x values are checked in indices over S and T
and successful (x, a) tuples are further extended to full outputs. We
omit the details of FreeJoin’s implementation. Briefly, given a query
Q, the approach generates bushy binary join-only plans P optimized
by the DuckDB system (Raasveldt and Mühleisen, 2019a). Then P is
broken into a sequence of left-deep plans LP1, ..., LPk. Each LPi is
compiled by default to a FreeJoin binary plan as shown in Figure 3.12a.
Then, the code in Figure 3.12a is optimized pulling any of the index
lookups to upper levels to do some early filtering of tuples that will
not successfully join. In this example, this optimization would yield the
plan in Figure 3.12c.

3.6 Other Work and Open Problems

In this section, we described approaches that use WCO plans for evalu-
ating queries over static databases in shared memory single node setting.
Several other works have studied applying these techniques in two other
settings. Ammar et al. (2018) implement distributed versions of the
Generic Join algorithm. These algorithms assume that there is a dis-
tributed index that is consistent with a given JAO for a query Q across
a cluster of machines. In graph terms, one can think of this setting as
the adjacency lists of an input graph being distributed across machines.
Then these algorithms use Generic Join’s multiway intersections as
the core algorithmic primitive. The key optimization in this work is
to avoid sending large adjacency lists that will be intersected across
machines. This work demonstrate that one can achieve good perfor-
mance on actual evaluations. In distributed join algorithms literature,
the cost metrics that algorithms optimize include load, i.e., the amount
of memory required per machine; total communication; and the number
of synchronizations between machines. In terms of theoretical guaran-
tees, the Generic Join-based algorithms by Ammar et al. (2018) have
communication levels that are bounded by the AGM bound while main-
taining a guaranteed load balance across machines. However, for many
parallelism levels, much lower communication levels than the AGM
bound can be achieved. For example, the HyperCube distributed join



124 Worst-case Optimal Join Algorithms

algorithm (Afrati and Ullman, 2011; Beame et al., 2017) can achieve
O(p1/3IN) communication with asymptotically perfect load balance,
where p is the number of machines. This is asymptotically much better
than the O(IN3/2) communication for any realistic parallelism level. See
the survey on distributed join algorithms by Koutris et al. (2018) for
an extensive coverage of this literature.

Veldhuizen (2013) has described an incremental version of the
Leapfrog TrieJoin algorithm that we covered in Section 3.3.1. This
approach is based on keeping a trace of the computation, specifically
low-level descriptions of the iterator positions throughout the com-
putation. Then, upon updates to the underlying relations, this trace
is updated to reflect the accurate trace of Leapfrog TrieJoin on the
updated relation, in addition to producing the changes in the output.
Veldhuizen (2013) proves that this approach takes time proportional to
the trace edit difference between the traces of Leapfrog TrieJoin before
and after each update.

Ammar et al. (2018) have proposed an incremental version of Generic
Join called Delta-GJ and distributed versions of this incremental join
maintenance algorithm. Delta-GJ is based on the idea of delta decom-
positions of join queries (Blakeley et al., 1986), where a join query Q is
decomposed into multiple delta queries, δQ1, ..., δQk, where each δQi

has a delta relation, which only contains the set of updates that need to
be processed. This makes each δQi easy to process because at least one
relation is very small. The Delta-GJ algorithm is based on evaluating
each delta query using Generic Join. Ammar et al. (2018) show that
under insertion-only workloads, Delta-GJ maintains any query Q in
time that is asymptotically bounded by the AGM bound of Q. In other
words, the total work that is done by Delta-GJ after t batch of insertions
to the input relations of Q, is asymptotically bounded by the AGM
bound of Q on the final, i.e., largest, versions of the input relations. In
fact, this is a property also shared by the incremental Leapfrog TrieJoin
algorithm by Veldhuizen (2013). However, Delta-GJ is guaranteed to
require memory that is linear in the size of the inputs and deltas, while
the traces maintained by Leapfrog TrieJoin can be super-linear. Finally,
Mhedhbi et al. (2021) studied the problem of maintaining multiple
queries using Delta-GJ. This work proposes optimizations to share work
across multiple delta queries to minimize total computation.



3.6. Other Work and Open Problems 125

Aside from giving rise to WCOJ algorithms, a separate interesting
application of the AGM bound in database systems has been on car-
dinality estimation. Along with AGM bound, there have been several
other upper bounds on query sizes that use different statistics about
the database, such MOLP by Joglekar and Ré (2018) or CLLP by
Abo Khamis et al. (2016). Since these are upper bounds on the size
of queries, Cai et al. (2019) have shown that they can be used as a
cardinality estimation technique. It is well known that systems suffer
from extreme underestimation when estimating the cardinalities of
sub-queries (Leis et al., 2018). The use of upper bounds ensure that
the estimates of sub-queries can only be over-estimates. Therefore, by
design, using pessimistic query size upper bounds as estimation solves
this underestimation problem. However, Cai et al. (2019) and Chen et al.
(2022) observe that simply using these bounds is very pessimistic and
leads to very inaccurate estimates. Cai et al. (2019) present techniques
to improve pessimistic estimates that rely on AGM-like bounds and im-
plement their technique in Postgres. Chen et al. (2022) have shown that
the pessimistic estimator by Cai et al. (2019) and Graphflow’s estimator,
which was based on keeping statistic of small-size subgraphs/joins are in
fact related. Specifically, Chen et al. (2022) show that these estimators
are special instances of a more generic cardinality estimation technique
they call cardinality estimation graphs. The primary difference between
these estimators is that pessimistic estimators use maximum degrees of
attribute values in relations while Graphflow’s estimator uses average
degrees in a cardinality estimation graph.

In this monograph, we model graph-structured data using the rela-
tional model, to focus on the adoption of query processing techniques
within DBMSs. We note however that evaluating join queries on many-
to-many relations relates to the subgraph matching problem (Sun et al.,
2020). Subgraph matching takes as input an edge- and vertex-labeled
graph G = (V, E) where V and E are the set of vertices and edges,
respectively, and a query Q(VQ, EQ) that is typically much smaller
than G. It then requires enumerating the instances of Q in G, called
matches, which are subgraphs of G. If we assume that each edge label
maps to an Edge table, then each pair of query edges in Q sharing a
query vertex represent an equi-join (possibly a self-join) between Edge



126 Worst-case Optimal Join Algorithms

tables dependent on the query edge labels. As such, subgraph queries
can be seen as the same problem of multi-way joins.12 State-of-the-art
subgraph matching techniques rely on vertex-at-a-time evaluation us-
ing adjacency list intersections, which is similar to the computation
performed by WCOJ algorithms. Earlier methods used edge-at-a-time
evaluation, which are similar to binary joins. The equivalence between
these computations has been highlighted in several publications. Per-
haps Sun et al. (2020) have demonstrated this equivalence best. At
the same time, the techniques developed for these two separate lines
of work target different workloads. Subgraph matching focuses on find-
ing large but rarely appearing patterns on dense graphs, such as in
protein interaction or chemical networks (Bhattarai et al., 2019; Bi
et al., 2016; Han et al., 2019). These patterns correspond to queries
with a large number of query edges. Multiway join queries instead focus
on queries with a small number of vertices on relatively sparse graphs
found in social and transactional networks. In term of query processing
techniques, subgraph matching algorithms first generate a candidate
vertex set for each query vertex using specialized pruning methods
before enumeration, often by building an index at query evaluation time.
In contrast, join querying techniques rely on direct enumeration similar
to the plans mentioned in this section. RapidMatch (Sun et al., 2020)
takes a relational approach with a simple pruning technique to bridge
this gap and support both workloads.

We end this section by discussing several open problem for the field:

• Optimizing WCO plans: First, besides Graphflow’s approach that
estimates the size of adjacency lists when picking JAOs, there is
very little work on optimizing WCOJ algorithms. This approach
assumes that the relations are binary and cannot be applied for
general relations. So far, techniques for picking good JAOs have
been based on very simple heuristics.

12Some versions of subgraph matching can have special conditions, such as the
nodes or edges in the matches to be unique. In vanilla equi-join queries over Edge
tables, there are no such restrictions. So the equivalence we mention holds in this
unrestricted version of subgraph matching.



3.6. Other Work and Open Problems 127

• Index sorting bottleneck: Sorting indices is acknowledged in mul-
tiple works as a main performance bottleneck when using WCOJs
in systems (Freitag et al., 2020; Wang et al., 2023). Therefore
database cracking-like approaches of Idreos et al. (2007), which
build parts of indices on demand can be explored to lower or
amortize the cost of building indices.

• Beyond WCOJ algorithms: Finally, after the development of
WCOJ algorithms, a class of beyond WCOJ algorithms have been
developed by Ngo et al. (2014) and Khamis et al. (2016). These
algorithms’ complexities are measured by the size of the “proofs”
they construct to ensure that the output of a join is correct. As a
simple example, consider the intersection of two relations R(A)
and S(A). Further suppose that A is a numeric column and R’s
A values end with n while S’s start with n + 1. Therefore the
output is empty and if the relations are sorted there is a very
simple proof of this: n < n+1. This proof does only 1 comparison.
Each correct join algorithm can be thought of as producing such
implicit proofs during its execution. The work on beyond WCOJ
algorithms aims to develop algorithms that are optimal in terms
of the number of comparison operations they perform for specific
database instances. Very interestingly, the algorithms developed
so far, such as Minesweeper (Ngo et al., 2014) and Tetris (Khamis
et al., 2016), do not operate on the input values. Instead, they
operate on the gaps between the values. Instead of joining input
tuples as traditional join algorithms do, they find large output
spaces that cannot contain any tuples. Needless to say, this style
of processing deviates significantly from how existing query pro-
cessors work. Understanding these algorithms better and making
them practical is an important area of research.



4
Factorization

Section 3 introduced the theory of worst-case optimal joins (WCOJs) and
their adoption by DBMSs. WCOJs reduce the size of large intermediate
results for cyclic m-n join queries by, intuitively speaking, avoiding
generating intermediate results that do not satisfy cyclic join conditions.
However, the standard table-at-a-time query processing may generate
large intermediate results also for acyclic join queries. In some cases,
this is in fact unavoidable because the final join result itself may be
large, but in many cases, such intermediate results may get pruned
through further joins. However, in either case, using more compact or
compressed representations of the results may bring significant benefits
in terms of storage costs as well as processing costs during the query
evaluation.

Consider the m-n input relation R(src, dst) in Figure 4.1. Consider
the following queries:

i. Q1(a1=1, a2, a3) ∶= R(a1=1,a2), R(a1=1, a3); and

ii. Q2(a1, a2, a3) ∶= R(a1, a2), R(a2, a3).

Note that Q1 and Q2 assign different variables to src and dst columns
of R. We will use these two queries and their variants throughout this

128



129

R(src, dst)
src dst

1 2
1 3
1 4
2 5
2 6
3 2
3 4
4 7
4 8

(a) Tabular format.

1 3

2

4

5

6

7

8
(b) Graph format.

Figure 4.1: Input relation R(src, dst) in tabular and graph format and the output
of Q1(a1=1, a2, a3) ∶= R(a1=1, a2), R(a1=1, a3) as a factorized representation.

section. Figure 4.2 shows the output relations of Q1 and Q2 following a
flat tuple representation when evaluated over R(src, dst). Q1’s output
relation has 11 tuples for a total of 33 “data values”, where each column
value is counted as one atomic unit, while Q2’s has 12 tuples for a total
of 36 data values. Both relations however have many value repetitions.

A possible and more compact representation, called factorized repre-
sentation, of Q1’s output is as follows: a1 ∶ {1}×a2 ∶ {2, 3, 4}×a3 ∶ {2, 3, 4},
which contains only 7 data values. Figure 4.2 shows this representation
titled “Q1’s factorized output”. This is an example of avoiding Cartesian
products as the a2 and a3 values are conditionally independent given a1.
In other words, once the a1 variable is fixed to a value, the sets of a2 and
a3 values in the output (corresponding to that a1 value) are independent
of each other. Equivalently, the multi-valued dependency (MVD) (Fagin,
1977) a1↠ a2 holds in the output relation (equivalently a1↠ a3 also
holds). Similar to how 4th normal form decomposition uses MVDs to
decompose and compress base database relations in a lossless way, fac-
torization uses them to compress intermediate or output query relations.
In fact, this is an important distinction of factorization from standard
applications of compression techniques in literature. Compression in
DBMSs is generally a technique that is primarily integrated into storage



130 Factorization

Q1(a1=1, a2, a3)
a1 a2 a3
1 2 2
1 2 3
1 2 4
1 3 2
1 3 3
1 3 4
1 4 2
1 4 3
1 4 4

Q1’s factorized output

∪a1

1
×

∪a2

2 3 4

∪a3

2 3 4

Q2(a1, a2, a3)
a1 a2 a3
1 2 5
1 2 6
1 3 2
1 3 4
1 4 7
1 4 8
3 2 5
3 2 6
3 4 7
3 4 8

Figure 4.2: Output of queries Q1(a1=1, a2, a3) ∶= R(a1=1, a2), R(a1=1, a3) and
Q2(a1, a2, a3) ∶= R(a1, a2), R(a1, a3) evaluated on R(src, dst) in Figure 4.1.

managers to compress base relations. Instead factorization is a technique
for the query processors to compress intermediate relations that are
generated during query execution. This is the core of the representation
system called f-representations (Section 4.2).

The above is an example of a data-independent compact rep-
resentation; given the schemas of the relations and the joins in the
query, the above factorization would apply to any relation instances. We
devote the bulk of this section to discussing such representations. These
representations are proposed in the theory of factorization (Olteanu and
Zavodny, 2015; Olteanu and Schleich, 2016). This theory shows that
intermediate results of acyclic m-n join queries can be highly compress-
ible as they typically contain MVDs between the attributes. Further,
the theory shows how to determine these dependencies statically during
query compilation time (see the “path constraint” in Section 4.2.1).

We also briefly discuss a data-dependent approach, that analyzes
the specific relation instances to identify compression opportunities
(which in turn is closely related to the work on graph compression), and
can be applied even if there are no MVDs in the result to exploit, which
is often the case when there are projections in queries. However, the
computational cost of the compression is significant in such approaches,
and can only be justified if the resulting compressed result is repeatedly
used or stored.



131

A natural question here is how this relates to the classical Yannakakis
algorithm (Yannakakis, 1981) that provides guarantees on the overall
query processing time in terms of the total input and output sizes (thus
avoiding the generation of intermediate results larger than the final
output size). First, we note that when the final output size itself is
very large, the Yannakakis algorithm does not avoid the generation of
large intermediate results. In contrast, factorized representations will
work even in that case, and in many cases, it is possible to use the
compressed representation itself for the next processing step. Second,
the key to the Yannakakis algorithm is its use of two semijoin passes
to remove “dangling” tuples, which enables it to avoid generation of
redundant intermediate tuples. However, in practice, the overheads of
those two passes are significant and unlikely to pay off; in fact, we
are not aware of any practical implementation of the algorithm in a
commercially used system. In contrast, factorized representations can
be used in a single pass, and although they do not provide the same
guarantee, in practice, they can be used to handle many of the worst-
case scenarios that the Yannakakis algorithm is designed to handle.
Lookahead-based approaches (e.g., Zhu et al., 2017) provide a promising
and practical in-between alternative, that in essence approximates one of
the passes of the Yannakakis algorithm through use of efficient semi-join
implementations (e.g., using bloom filters).

In this section, we cover the f- and d-representations proposed
by Olteanu and Schleich (2016), and system implementations of those
representations in FDB, Graphflow, and Kùzu. We use the term “fac-
torization” to specifically refer to this line of work, and the term
“compression” to refer to general techniques that reduce the size of
intermediate results. We begin with the foundations of factorization
theory in Section 4.1. In Section 4.3, we cover two approaches that adopt
f-representations: (i) FDB system’s approach based on materialized tries;
and (ii) Graphflow and Kùzu’s approach of factorized vectors. We also
cover how Graphflow adopts d-representations in Section 4.5.



132 Factorization

4.1 Overview of Factorization

Theory of factorization proposes two relation representation schemes
called f- and d-representations. Both of these schemes represent relations
as tries and can lead to significant space savings over representing
relations as flat tuples, which is the de facto way to represent and store
relations in systems. This is done through two techniques: 1) avoiding
Cartesian products across sets of values; and 2) caching and reusing
subquery results.

We already saw an example of the former. Next, we demonstrate
the reuse of subquery results for further compression. A possible fac-
torization of Q2’s output that avoids Cartesian products is shown as a
trie in Figure 4.3a. This trie has 17 data values instead of 36 in the flat
representation. The trie in the figure can be read as follows. At a node
∪y, we take the union of the tuples of the subtrees under the union
symbol. y in ∪y is the variable of the values of the immediate children
of ∪y. At a node ⨉, we take the Cartesian product of each branch of ⨉
with the parent value of ⨉ (if exists).

∪a1

1
×
∪a2

2
×
∪a3

5 6

3
×
∪a3

2 4

4
×
∪a3

7 8

3
×
∪a2

2
×
∪a3

5 6

4
×
∪a3

7 8
(a) F1.

∪a1

1
×
∪a2

2
×
∪a3

5 6

3
×
∪a3

2 4

4
×
∪a3

7 8

3
×
∪a2

2 4

(b) F2.

Figure 4.3: Output of Q2(a1, a2, a3) ∶= R(a1, a2), R(a1, a3) evaluated on R(src, dst)
in Figure 4.2 with two different factorizations F1 and F2.

For example, the left subtree under the root of Figure 4.3a corre-
sponds to the following expression:
(a2 = {2}⨉a3 = {5, 6}) ∪ (a2 = {3}⨉a3 = {2, 4}) ∪ (a2 = {4}⨉a3 = {7, 8})



4.2. F-Representations Background 133

Combined with the a1 = {1} at the root, in flat representation, this
corresponds to six (a1, a2, a3) tuples:

{(1, 2, 5), (1, 2, 6), (1, 3, 2), (1, 3, 4), (1, 4, 7), (1, 4, 8)}

The use of ∪ and ⨉ as in this example is the core of f-representations.
An even more compact representation is possible if we reuse the

subquery results as shown in Figure 4.3b. These same reusable subquery
results are highlighted in blue and red boxes in Figure 4.2. In the figure,
the two inner nodes (a2 ∶ 2) and (a2 ∶ 4) that are under (a1 ∶ 3) reuse the
subtrees of (a2 ∶ 2) and (a2 ∶ 4) under (a1 ∶ 1) by pointing to them. In this
case, the factorized representation has instead 13 data values. This is the
core of the representation system called d-representations (Section 4.4),
which extends f-representations with reused nested relations.

In addition to the two representations above, the theory of factor-
ization offers two core insights to developers of DBMSs to efficiently
evaluate acyclic m-n join queries:
1. Process relations using factorized representations at the physical

layer during query evaluation.
2. Use tries as the backing data structure for factorized representations.

4.2 F-Representations Background

Next, we introduce the formalism of f-representations following (Olteanu
and Zavodny, 2015), and introduce factorized trees (f-trees), used to
describe the algebraic factorization over the query variables, describing
in turn the structure of an f-representation. We also discuss the size
bounds of f-representations on query results.

Consider the input relation R shown in Figure 4.4. Consider further
the 4-hop query Q4H ∶= R(a1, a2), R(a2, a3), R(a3, a4), R(a4, a5) as a
running example. To have a consistent formalism across flat and fac-
torized representations,we will represent tuples as Cartesian products.
DBMSs use flat representations and as such Q4H ’s output evaluated on
R contains k3 tuples of the form (v1i × v2 × v3j × v4 × v5ℓ

), where i, j,
and ℓ are ∈ [1, k]. If we count the size of relations as the number of data
values, since each tuple contains 5 values, the size of this representation
is 5k3.



134 Factorization

...

v11

v1k

v2 ...

v31

v3k

v4 ...

v51

v5k

Figure 4.4: Another instance of relation R(src, dst).

Factorized representations employ algebraic factorization to nest
Cartesian products and unions and compress results. Consider the
possible factorized representations (f–representations) in Figures 4.5a
and 4.5b. Factorizations can be thought of as groupings. F1 in Figure 4.5a
has in its root a1 values grouping a2’s, which group a3’s, which group
a4’s, which group a5’s. F2 in Figure 4.5b, however, has a different
structure. Each a3 value groups separately a2 and a4 values. a2 values
group a1’s and a4 values separately group a5’s.

Given an arbitrary relation R(a, b, ...), finding the most compact
f–representation of R is NP-hard (Olteanu and Zavodny, 2015). How-
ever, if R is the result of a query, then the structure of the query
can give rise to MVDs between the attributes in the result. In other
words, the structure of the query can lead to attribute-level conditional
independence relationships that can be exploited to obtain compact
f–representations. For example, in Q4H for any fixed value of a3, we can
infer from the query that the sets of {a1, a2} and {a4, a5} values are
independent. Equivalently the a3 ↠ {a1, a2} holds in R. Therefore in
the query results, {a1, a2} and {a4, a5} are independent, conditioned on
a3. This is how the f–representation in Figure 4.5b above was obtained.
This conditional independence is described using factorized trees, which
we introduce next.

4.2.1 Factorized Trees

An f-tree T is a formalism to describe the structure of an f-representation
F . Formally, an f–tree T is a rooted tree such that each node ni of
T is labelled by a query attribute. The union of all query attributes
labelling the nodes in T is the set of all query attributes. The shape of
T provides a hierarchy of attributes by which we group the tuples of
the represented relation. Let R be the equivalent flat representation of



4.2. F-Representations Background 135

∪a1

v11

×
∪a2

v2

×
∪a3

v31

×
∪a4

v4

×
∪a5

v51...v5k

... v3k

×
∪a4

v4

×
∪a5

v51...v5k

... v1k

×
∪a2

v2

×
∪a3

v31

×
∪a4

v4

×
∪a5

v51...v5k

... v3k

×
∪a4

v4

×
∪a5

v51...v5k

(a) F1.

∪a3

v31

×
∪a2

v2

×
∪a1

v11...v1k

∪a4

v4

×
∪a5

v51...v5k

... v3k

×
∪a2

v2

×
∪a1

v11...v1k

∪a4

v4

×
∪a5

v51...v5k

(b) F2.

Figure 4.5: Output of Q4H ∶= R(a1, a2), R(a2, a3), R(a3, a4), R(a4, a5) as f-
representations F1 and F2 following T1 and T2, respectively. T3 is an example f-tree
that cannot be used to factorize the output of Q4H .

the relation that F represents. This grouping process can be thought
of as follows. We group the tuples in R by the values of the attributes
labelling the T ’s root, say a. This forms a set of groups, say Ga=1, Ga=2,
..., Ga=g. Suppose that for T , a has k children labeled c1, ..., ck. Then for
each ci, child of a, and for each group, say Ga=j , we project the tuples
in Ga=j to the attributes in the subtree rooted at ci. When constructing
the original relation, we take Cartesian product of each projection to
re-construct each Ga=j and unions across all groups Ga=1, ..., Ga=g to
re-construct R. This process iteratively continues in each child of the
root.

As an example, the f–trees T1 and T2 in Figures 4.6a and 4.6b
describe the structure of the f-representations in Figures 4.5a and 4.5b,
respectively. Not every f-tree can be used to factorize the output of
a query Q. We call an f-tree that can factorize Q a valid f-tree for Q.



136 Factorization

a1

a2

a3

a4

a5

(a) T1.

a3

a2

a1

a4

a5

(b) T2.

a3

a4

a1 a2

a5

(c) T3.

Figure 4.6: Output of Q4H ∶= R(a1, a2), R(a2, a3), R(a3, a4), R(a4, a5) as f-
representations F1 and F2 following T1 and T2, respectively. T3 is an example f-tree
that cannot be used to factorize the output of Q4H .

The structure of an f-tree represents a set of conditional independence
relationships between the attributes and these relationships need to
hold in the output of Q. Consider a node ai of an f-tree with ℓ children
ci1, ..., ciℓ. In a corresponding f-representation, conditioned on ai, we
take Cartesian products of ℓ+1 sets: (i) the tuples represented by each
children of ai, which form ℓ many sets; and (ii) one fixed set of bindings
to the ancestors of ai, which forms a set with a single tuple.

For example, the f-tree T3 in Figure 4.6c is not a valid f-tree to
factorize the output of Q4H under all database instances. This is because,
given a3 and a4, a1 and a2 are not independent. To see this, consider
the modified input graph shown in Figure 4.7. In this graph, one can
see that the output contains (v12 , v21 , v31 , v4, v51) and (v11 , v22 , v31 ,
v4, v51). These two tuples have the same a3 and a4 values. However, the
output does not contain a tuple where a1=v12 and a2=v22 for the same
a3 and a4 values, i.e., the tuple (v12 , v22 , v31 , v4, v51), which would have
to be included if a1 and a2 were conditionally independent given a3 and
a4.

There is a simple condition that can be used to decide whether or
not an f-tree can be used to factorize the outputs of Q. To explain the
condition we first make the notion of dependence formal:1

1Olteanu and Zavodny (2015) have a different definition defined not for queries
but relations first. From this initial definition, the two conditions we used to define
dependence are deduced as properties of their definition. We simplify the formalism
here to focus on the use of the notion of dependence for relations that are outputs of
queries.



4.2. F-Representations Background 137

...

v11

v1k

v21

v22

...

v31

v3k

v4 ...

v51

v5k

Figure 4.7: Modified Relation R(src, dst) in Figure 4.4 with an extra node v22

added to the relation in Figure 4.4.

Definition 4.1. (Dependence)2 Two attributes a and b are dependent if
they are in the same relation, or if there is a chain of relations R1, ..., Rk

in Q such that a is in the schema of R1 and b is in the schema of Rk,
and for all pairs of relations Ri and Ri+1 in the chain, Ri and Ri+1 are
joined on an attribute that is projected out in Q.

We can also define a notion of conditional independence between
sets of attributes as follows: two disjoint sets of attributes A and B
are conditionally independent on the set of attributes C in a relation R

where C denotes the rest of the attributes in R (in this case, the output
relation of Q), if R = πA,C(R) &C πB,C(R).

Note that if A and B are conditionally independent, then C↠A∣B,
therefore we can factor out A and B conditioned on C in an f-represen-
tation. We will not need to use this direct definition of conditional
independence to define valid f-trees. Instead, we will use a property
of f-trees called the “path constraint”, which a simple and practical
condition that can be used to check if an f-tree is valid for Q, i.e., it
captures a set of correct conditional dependencies or MVDs in the final
output.

Theorem 4.1. (Path constraint) Given a query Q and an f–tree T , T
is a valid factorization tree of Q if any two dependent attributes are on
the same root-to-leaf path.

Proof of this theorem is provided by Olteanu and Zavodny (2015).
Readers can verify that the f-trees in Figures 4.6a and 4.6b satisfy the

2The notion of dependence we introduce here follows the definition of Q-
dependence by Olteanu and Zavodny (2015).



138 Factorization

path constraint. In contrast, the f-tree in Figure 4.6c does not satisfy
the path constraint because a1 and a2 are dependent (they appear in
R1) and appear on different root-to-leaf paths.

4.2.2 F-Trees and Multi-valued Dependencies

We next discuss the connection between f-trees and MVDs in more detail.
We first begin by reviewing the definition of an MVD (Fagin, 1977).
An MVD X ↠ Y holds in a relation R, where X and Y are attributes
of R, if the following condition holds. Let Z be attr(R) −X − Y , i.e.,
Z are the “rest” of the attributes in R. Given two tuples t1 and t2,
if t1[X] = t2[X] and t1[Y ] ≠ t2[Y ], then there are 2 further tuples t3
and t4 that take the two other combinations of t1 and t2’s Y and Z

values. That is t3 is of the form: t1[X]⋅t1[Y ]⋅t2[Z], and t4 is of the form:
t1[X]⋅t2[Y ]⋅t1[Z], where we are using ⋅ as the concatenation operator.
In other words, once a particular X values are fixed, Y and Z can be
“factored out” and are independent of each other. 4NF decompositions
are indeed obtained by using such factorizations.

Our first observation is that each f-tree represents a set of MVDs in
the output of Q. Specifically, at each node ah in an f-tree T , there is
an MVD of the following form.

Lemma 4.2. Let an f-tree T be a valid f-tree for a relation R. Let
anc(ah) be the ancestors of ah including ah and let c be a child of ah.
Let des(c) be the set of attributes in the subtree rooted in c, including
c. Then, the MVD anc(ah) ↠ des(c) holds in R.

Proof. Let a1, ..., am be the attributes in T . Let ah be an arbitrary node
in T . Without loss of generality, assume that a1 is the root of T and
the ancestors of ah are a1, a2, ...., ah. Consider again without loss of
generality that T drawn so that this path is the left most path as shown
in Figure 4.8. That is, each ai is the left most child of its parent. Let
des′(ai+1) be the union of all subtrees that are rooted in the siblings
of ai+1. Figure 4.8 shows des(ai+1) and des′(ai+1) pictorially. We can
prove the lemma using the definition of MVDs that we reviewed above.

To prove that anc(ah) ↠ des(c), observe X=anc(ah), Y =des(c), and
Z = ∪i=1...,hdes′(ai). Let’s represent any tuple t as follows: t[a1...ah] ⋅



4.2. F-Representations Background 139

Figure 4.8: Example f-tree demonstrating the definition of desc(ai).

t[des′(a1)] ⋅ . . . ⋅ t[des′(ah−1)] ⋅ t[des′(ah)] ⋅ t[des(ah)]. Now consider
two tuples:

t1[a1..., ah−1] ⋅ t1[des′(a1)] ⋅ . . . ⋅ t1[des′(ah−1)] ⋅ t1[des′(ah)] ⋅ t1[des(ah)]

t2[a1..., ah−1] ⋅ t2[des′(a1)] ⋅ . . . ⋅ t2[des′(ah−1)] ⋅ t2[des′(ah)] ⋅ t2[des(ah)]
Assume that t1[a1..., ah]=t2[a1..., ah] but t1[des(ah)]≠t2[des(ah)]. Then
notice that, by the structure of the f-tree T , des(ah) is independent of
des′(ah) conditioned on a1, . . . ah−1. Therefore, we can infer that two
tuples, say t′3, and t′4, of the following form exist:

t1[a1..., ah−1] ⋅ t1[des′(a1)] ⋅ . . . ⋅ t1[des′(ah−1)] ⋅ t2[des′(ah)] ⋅ t1[des(ah)]

t2[a1..., ah−1] ⋅ t2[des′(a1)] ⋅ . . . ⋅ t2[des′(ah−1)] ⋅ t1[des′(ah)] ⋅ t2[des(ah)]
Note that des(ah−1)=des(ah) ∪ des′(ah). Therefore, we now have

two tuples that agree on a1, ..., ah−1 and differ in des(ah−1) attributes
(because we assumed t1[des(ah)]≠t2[des(ah)]). We can therefore infer
by the structure of T that the following t′′3 and t′′4 tuples exist:

t1[a1..., ah] ⋅ t1[des′(a1)] ⋅ . . . ⋅ t2[des′(ah−1)] ⋅ t2[des′(ah)] ⋅ t1[des(ah)]

t2[a1..., ah] ⋅ t2[des′(a1)] ⋅ . . . ⋅ t1[des′(ah−1)] ⋅ t1[des′(ah)] ⋅ t2[des(ah)]
Repeating the same argument iteratively, we can infer that the following
two tuples t3 and t4 exist, completing the proof:

t1[a1..., ah] ⋅ t2[des′(a1)] ⋅ . . . ⋅ t2[des′(ah−1)] ⋅ t2[des′(ah)] ⋅ t1[des(ah)]

t2[a1..., ah] ⋅ t1[des′(a1)] ⋅ . . . ⋅ t1[des′(ah−1)] ⋅ t1[des′(ah)] ⋅ t2[des(ah)]



140 Factorization

For example, consider the root of T2 in Figure 4.6b. By Lemma 4.2,
we can write a3 ↠ {a2,a1} as well as a3 ↠ {a4, a5}. Alternatively,
we can use the more compact notation for MVDs and write these as
a3↠ {a2, a1}∣{a4, a5}. Corresponding to the two children of a1, we also
have MVDs: a1, a2↠ a3 and a1, a4↠ a5.

Similarly, consider a query for which T3 in Figure 4.6c is valid.
Recall that T3 is not valid for Q4H but it would be valid in a query QT3

that looks exactly in the shape of T3, i.e., QT3 ∶= R(a3, a4), R(a3, a5),
R(a4, a1), R(a4, a2). Then by Lemma 4.2, the following MVDs holds
in the output a3 ↠ {a4, a1, a2}; {a3, a4} ↠ a1; or {a3, a4} ↠ a2. Note
however that each f-tree captures only a subset of the MVDs that exist
in the output of the query. For example, T does not capture a3 ↠
{a2,a1}, which we showed is captured by T2.

In fact, as a corollary, an f-tree as a whole represents a full first
order hierarchical decomposition (FOHD) (Delobel, 1978) of the form:

anc(ah) ∶ des(c1)∣des(c2)∣...∣des(ck)

FOHDs were introduced as a generalization of MVDs to more properly
represent embedded MVDs and to capture a hierarchical structure akin
to f-trees.
A note on projected attributes: If the query contains projections,
the standard rule for projections and MVDs can be used to find the
set of MVDs that hold on the result. Specifically, if X ↠ Y ∣Z holds on
a relation such that X ∩ Y = X ∩Z = Y ∩Z = ϕ, and if we project out
attributes from Y and Z to get Y ′ and Z ′ respectively; then the MVD
X ↠ Y ′∣Z ′ holds on the result relation. Note that, if any attribute
from X is projected out, then this MVD must be thrown away. As an
example, in the join of R(A, B) and S(B, C), we have that the MVD
B↠ A∣C holds, but if B is projected out, then there is no non-trivial
MVD on the result relation. The path constraint captures this case
for f-representation. That is, If B is projected out from the output of
R(A, B) & S(B, C), then according to the path constraint A and B

become dependent, so there is no f-tree that can factor out the set of
A’s from set of B’s.



4.2. F-Representations Background 141

4.2.3 Worst-case Size Bounds for F-representations

In general, a query Q may be factorized with different f-trees, which
will typically result in different output sizes. For example, T1 and T2
(Figures 4.6a and 4.6b) are two different f-trees for Q4H , and T2 leads
to a more compact f-representation than T1 on Q4H on the R(src, dst)
relation from Figure 4.1. In fact the groupings done by T1 are effectively
the same as the flat representation. T1’s corresponding representation
F1 is shown in Figure 4.5a. Readers can verify that F1 contains Θ(k3)
many values (k3+2k+2 to be exact). The f-representation corresponding
to T2 is shown Figure 4.5b as F2. As readers can verify, F2 has a more
succinct representation with an asymptotic size of Θ(k2) (2k2 + 3k to
be exact). We next discuss the worst-case bounds for f-representations
of queries akin to the AGM bound.

For simplicity, we assume all queries contain self-joins and are hence
on the same relation R with N tuples. Recall from Section 3 that the
AGM bound of a query Q, denoted by Nρ∗(Q) (ignoring asymptotic
notations), is the worst-case output size for a given query on database
instances with N tuples. Nρ∗(Q) is effectively the worst-case size for
flat representations. The theory of factorization introduces a similar
notation, N s(Q), to refer to the minimal worst-case output sizes for
f–representations across all possible valid f-trees for Q.

Definition 4.2. (Minimal worst-case output sizes of f–representations)
Consider Q and an arbitrary valid f–tree T . Let N s(Q)T be the worst-
case size of the output of Q as an f-representation in the structure of T
across all possible database instances where each relation in Q contains
N tuples. Then N s(Q) is the minimum such worst-case size under the
“best” valid f-tree for Q, i.e., s(Q) =minT s(Q)T where the minimum
is taken over all valid f–trees for Q.

At a high-level, f-trees with the smallest s(T ) value lead to producing
the most compressed worst-case f-representations. Such “optimal” f-
trees are those that have the shortest root-to-leaf paths and branch out
the most.

Since Nρ∗(Q) is the size of flat representations, it has the same
asymptoic size of f–representations corresponding to f–trees that are



142 Factorization

paths, i.e., each node has at most a single child (e.g., T1 from Figure 4.6a).
As such, by definition, the worst-case f–representation of the output
of Q is at most the AGM bound of Q. Further, for some queries it is
strictly smaller. Therefore, s(Q) ≤ ρ∗(Q) for any query Q. For example,
consider the 4-hop query Q4H on an input edge relation R of size N . The
AGM bound of Q4H is ρ∗(Q4H) = Θ(N4). Meanwhile the worst-case
output size of the f–representation that uses T2 in Figure 4.6b is Θ(N2).
In fact T2 is the optimal f-tree, so for Q4H , ρ∗(Q) = 4 while s(Q) = 2.

4.3 Approaches to Adopting F-Representations

The two approaches that adopt f-representations in literature are based
either on materialization or pipelined vectorized execution. Specifically,
in the FDB system by Bakibayev et al. (2012), operators produce inter-
mediate f-representations of relations as fully materialized tries. The
Graphflow (Gupta et al., 2021) and Kùzu (Feng et al., 2023) systems
pipeline f-representations in chunks of factorized vectors.

4.3.1 FDB: Fully Materialized Relations as Tries

FDB is an in-memory query engine capable of evaluating select-project-
join and aggregation queries. It is the first engine to rely on factorized
representations to improve query performance. It is capable of stor-
ing factorized base relations. The core query processing approach of
FDB is based on query plans that consist of operators that take an
input f-representation following an f-tree T and produce another f-
representation following T ′ . Each primitive operator in the system
performs T → T ′ mapping. In the remainder of this section, we de-
scribe FDB’s approach through an example plan and cover several of
its core operators: swap and merge, along with standard operators, such
as scan. Several other variants of the operators we cover, e.g., absorb,
can be found in the original FDB publication (Bakibayev et al., 2012).
Bakibayev et al. (2013) also describe further optimizations to perform
aggregations and ordering.



4.3. Approaches to Adopting F-Representations 143

Example FDB Plan and FDB Operators

FDB stores base relations as f-representations. Consider the base relation
R(src, dst) and let us suppose that R(src, dst)’s raw storage follows
the f-tree Tf−t shown in Figure 4.9a. We can think of this as equivalent
to a forward adjacency list index that holds for each source node v in
the graph a list of destination nodes. Consider further the FDB plan in
Figure 4.10a evaluating Q ∶= R(a1, a2), R(a2, a3). The plan is made of
three operators:

src

dst

(a) Tf−t

.

a1

a2

a2

a3

a2

a1

a2

a3

a2

a1 a3

ScanR(a1, a2), R(a2, a3) → Swap(a1,a2)R → Mergea2

(b) Plan P for evaluating Q(a1, a2, a3)

∪a1

1
×
∪a2

2 3 4

3
×
∪a2

2 4
(c) Scan ∶ R(a1, a2).

∪a2

2
×
∪a1

1 3

3
×
∪a1

1

4
×
∪a1

1 3
(d) Swap(a1,a2)R.

∪a2

3
×

∪a1

1

∪a3

2 4
(e) Mergea2 .

Figure 4.9: An Example evaluation of Q2(a1, a2, a3) ∶= R(a1, a2), R(a1, a3) on
R(src, dst) from Figure 4.2. R(src, dst) is stored following the f–tree Ta1−a2 ; (c)
shows that representation as the output of the Scan operator. (d) shows the result
of the Swap operation, and (e) shows the joined result for a2 = 3.

1. Scan scans base relations as f-representations. Q contains 2 relations
so for simplicity we show one scan operator scanning both relations and
producing two f-representations. Specifically, scan scans R(a1, a2) and
R(a2, a3) as f-representations following the f-tree Tf−t.
2. Swap is an operator that restructures an f-representation. Here it
is used to align the two f-representations from scan so that they can
be joined. As we will see next, the join of R(a1, a2) and R(a2, a3) on



144 Factorization

Scan (a1)

Extend (a1→a2)

Extend (a1→a3)

Sink

(a) Plan evaluating Q1.

a1

a2 a3

(b) T .

Figure 4.10: Plan evaluating Q2(a1, a2, a3) ∶= R1(a1, a2), R2(a1, a3) on R(src, dst)
in Figure 4.2 with a possible factorization for the output per f-tree T .

a2 is performed by “merging” the f-representations on the a2 values.
This is only possible by making one of the f-representations the child
of a2 in the other (assuming this operation does not violate the path
constraint). For example, in their current form after scan, one can
put the R(a2, a3)’s f-representation directly under the a2 nodes in the
R(a1, a2) f-representation. This would produce an intermediate relation
I(a1, a2, a3) that follows the linear f-tree of a1 → a2 → a3 (drawn left-
to-right), which is equivalent to a flat representation. The plan in
Figure 4.10a instead produces another f-tree with a2 as the root. To
produce this f-tree, both of the relations need to be in f-representations
with a2 as root. To achieve this, we need to restructure R(a1, a2)’s
f-representation and pull-up the a2 values over their a1 values, i.e.,
instead of grouping the tuples by a1, we need to first group them by a2.
Swap performs this operation.
3. Merge is similar to the standard merge-join operator, and joins
R(a1, a2) and R(a2, a3) on their a2 values. Now that both relations are
in f-representations grouped by a2, this involves performing a merge join
on the a2 values and for each joining a2i value, the operator puts the a1
values corresponding to a2i from R(a1, a2) and a3 values corresponding
to a2i from R(a2, a3) as two children of a2i (with appropriate U nodes)
in a new f-representation.

One property of the FDB operators is that any operator that re-
structures an existing f-representations, such as the swap operator, takes
quasilinear time (see Bakibayev et al., 2012). Merge operations, which



4.3. Approaches to Adopting F-Representations 145

perform joins, can still increase the size of the relations depending on
whether the join factorizes or can repeat certain branches.

FDB Query Optimizer

The plan introduced above was merely one possible plan. Many other
plans are possible and each can be identified by the f-trees that the f-
representations follow. FDB’s optimizer aims to find a plan such that the
maximal cost of the sequence of transformations minimizes the size of
the largest produced f-representation. More specifically, the cost measure
picked is the maximum integer value s(Ti) across all intermediate f-trees
Ti. Note that the cost measure in this case does not take into account
the size of the output f-representation. FDB uses the asymptotic bounds
for the size and not on actual cardinality estimates. FDB uses two
approaches when enumerating plans, exhaustive search or greedy search
heuristics to minimize the size of the explored space. We refer readers
to Bakibayev et al. (2012) for details of FDB’s optimizer.

4.3.2 Factorized Vector Execution by Graphflow and Kùzu

One shortcoming of FDB’s approach is that it deviates from several
common wisdom principles for developing performant query processors.
Specifically, a common wisdom in analytical DBMSs, which are opti-
mized for performing large reads and joins (though not m-n joins), is
to use a vectorized and pipelined query execution model. MonetDB
(Boncz et al., 2005), VectorWise (Zukowski et al., 2012), and DuckDB
(Raasveldt and Mühleisen, 2019b) are examples of systems that adopt
this query processing model. In this model, operators operate on vectors
of tuples, e.g., vectors of 1024 tuples each, that are pipelined across
operators. This contrasts with prior models where operators process
and pass one tuple at-a-time in what is often called Volcano-style pro-
cesing (Graefe, 1994). In vectorized execution, all primitive operations in
the system are written as for loops over vectors, which is well understood
to have important performance advantages on modern CPUs.

Traditional vectorized execution assumes that the operators are
processing a set of flat vectors. The motivation for factorized vector
execution model of Graphflow and Kùzu is to extend the vectorized



146 Factorization

execution model to also benefit from factorization. As will be explained
momentarily, this is done by adopting a limited form of f–representations.
We review the core of the idea here, which is to represent intermediate
relations as multiple factorized groups of vectors (vector groups). We
refer readers to the original publications on these systems describing
the details of their factorized vector executions (Gupta et al., 2021;
Feng et al., 2023). For simplicity, we use Graphflow’s query processor
to present this core idea using its extend/intersect operator (see
Section 3.3.3 for a review of extend/intersect).

Let us continue our example, this time using Q2∶=R(a1, a2),R(a1, a3)
from Section 4.2 on the relation R(src, dst) from Figure 4.1. Consider
the plan in Figure 4.10a for Q2. The plan scans a1 values and then
does an Extend with R(a1, a2) to produce (a1, a2) tuples and another
Extend with R(a1, a3) to produce (a1, a2, a3) tuples. In vanilla vec-
torized execution, the first Extend operator will take in a vector of
a1 ∶ [1, 2, ..., 8] values and extend these to two vectors of a1 ∶ [...] and
a2 ∶ [...] values. Recall that there are 8 nodes in the input graph in
Figure 4.1. Since Extend of a1 with R(a1, a2), extends each a1 value to
its outgoing neighbors and since node 1 has 3 outgoing neighbors, the
first 3 values in these vectors would be a1 ∶ [1, 1, 1, ...] and a2 ∶ [2, 3, 4...].
The second Extend operator with R(a1, a3) extends each a1 value in
the two a1 and a2 vectors to its outgoing neighbors. Figure 4.11a shows
the first 9 tuples of the output a1, a2, and a3 vectors (rest of the vectors
are omitted for simplicity). As shown in the figure, vanilla vectorized
execution generates many value repetitions in its vectors when perform-
ing m-n joins. For example a1 = 1 value is repeated 9 times in these 9
tuples. Further, each of the a2 values are repeated 3 times.3

Factorized vectors address these repetitions by representing inter-
mediate relations as multiple vector groups. Consider the vector repre-
sentation in Figure 4.11b. In this representation, there are three vector
groups each drawn in separate rectangles. Each vector group has a field
called position, that can take one of two values. -1 indicates that the
vector represents all of the values in the vector. When it is set to ≥ 0,

3In some systems, instead of actual variable values, some offsets of the values
would be repeated.



4.3. Approaches to Adopting F-Representations 147

(a) Vanilla vector execution. (b) Factorized vector execution.

Figure 4.11: Vectors received by the Sink operator of the plan in Figure 4.10a
using different vector execution approaches.

the vector represents a single value.4 A set of vector groups represent
the Cartesian product of the values each vector group represents. For
example, the three vector groups in Figure 4.11b represents exactly the
same 9 tuples represented in Figure 4.11a. Note that the figure shows 8
a1 values, 1, ..., 8, in the a1 vector although only the one at position
0, which is a1 = 1, is part of the current state. This will become clear
momentarily as we describe the actual execution.

The plan in Figure 4.10a generates these factorized vectors as follows.
The scan generates the vector group V G1 containing a1 values by
scanning a vector, in this example 8 tuples. At this stage, the position
value of V G1 would be -1 (omitted from the figure). The first Extend
operator, which extends a1 values to a2 first “flattens” V G1 by setting
the position value to 0. Then, it would write the set of “neighbors”
a2 of a1 = 1 to the second vector group V G2 with position set to -1.
Finally, the second Extend operator, which extends a1 values to a3,
simply writes the set of neighbors a3 of a1 = 1 to the third vector group
V G3 with position set to -1. In short, the Extend operators, flatten
the vector group of their bound variable (if they have to) and write a
set of neighbors to a separate vector group in an “unflat” way, i.e., by
setting position to -1. In the Kùzu system, instead of Extend operators
HashJoin operators similar to those presented in Section 3 are used but
intermediate relations are still represented using vector groups.

4We note that each vector group can contain multiple vectors, in which case their
state is represented by the same position value and take part as a single unit in the
Cartesian product.



148 Factorization

At a high-level the factorized vector execution is based on delaying
any value repetitions until it is necessary according to a query plans. This
allows passing tuples in f-representations between operators with some
vector groups having positions set to -1. The plans in Graphflow and
Kùzu are generated through a traditional dynamic programming-based
join order optimizer. The main change to this standard optimization
approach is that these systems use as cost metric the expected number
of factorized tuples that would be passed between operators. To estimate
this, during the dynamic programming optimization, the optimizer keeps
the factorization structure of the vectors that would be generated for
each sub-plan, and uses this information to estimate how much a new
join would increase the number of tuples generated.

4.3.3 Benefits and Limitations of Factorized Vector Execution

Keeping the intermediate relations in factorized vectors avoids value
repetitions, and leads to less data being written to intermediate data
structures such as hash tables. For example Kùzu has a data structure
called “FactorizedTable” in the blocking operators of the system that
need to accumulate sets of tuples (Feng et al., 2022). Another benefit of
using factorized vectors is that the computation is pipelined similarly
to standard vectorized execution and in most cases, operators can
operate on vectors. Another major advantage is that some aggregation
computations can be done very efficiently. For example counting operator
simply multiplies the sizes of each vector group to compute the number
of tuples represented by each intermediate chunk it receives. The benefit
of fast aggregations is an artifact of factorized query processing, and
also applies to FDB-style processing.

At the same time, there are several limitations of using factorized
vectors. Specifically, there may be plans in which an expression has
to run on two flattened vectors, in which case the processing happens
on one tuple at a time. Further, factorized vector execution can only
produce f-representations that follow a limited set of f-trees. The allowed
representations are ones following f-trees where each node has at most 1
non-leaf child node, which for many queries may not be the ideal factor-
ization. The reason behind this constraint is that unlike tries, factorized



4.4. Background on D-Representations 149

vectors cannot produce nested groupings of variables. Consider, for ex-
ample, the 4-hop query Q4H ∶ R(a1, a2), R(a2, a3), R(a3, a4), R(a4, a5).
The best possible representation would follow the f-tree in Figure 4.12a
with a worst-case size N2. However factorized vector executors can only
obtain factorizations of the form in Figure 4.12b with a worst-case size
N3. This means that certain compression benefits from factorization
are not attainable.

a3

a2

a1

a4

a5

(a) Most compact
f-tree for 4-hop

query.

a3

a2

a1 a4

a5

a3

a4

a2

a1

a5

(b) Examples of most compact f-trees that factorized vector execution
can use for 4-hop query.

Figure 4.12: F-trees supported by factorized vector execution.

4.3.4 Note on Factorization and Worst-case Optimal Joins

Both FDB and factorized vector execution can work seamlessly in plans
that also employ worst-case optimal join algorithms. For example,
Figure 4.13b shows a Graphflow plan for the two-triangles query
Q2∆ ∶= R(a1, a2), R(a1, a3), R(a1, a3), R(a3, a4), R(a3, a5), R(a4, a5) in
Figure 4.13a. In the plan both triangles are evaluated with Graphflow-
style worst-case optimal join operator. Further the intermediate results
of left and right triangles are factorized. An example set of vector
groups that the Sink operator would receive in this plan are shown in
Figure 4.13c. There are 5 vector groups. Three of them are flattened
with position values 0 while two of them are unflat with values -1.

4.4 Background on D-Representations

In this section, we give an overview of d-representations, i.e., factor-
ized representations with definitions. D-representations are extensions



150 Factorization

a3

a1

a2

a4

a5

(a) Query.

Scan (a1)

Extend (a1→a3)

Intersect
(a1→a2,a2→a3)

Build HT:a3→(a1,a2)

Scan (a3)

Extend (a3→a4)

Intersect
(a3→a5,a4→a5)

Probe HT:a3→(a1,a2)

Sink

(b) Plan.

(c) Vector groups.

Figure 4.13: Example of a plan and of vector groups received by the Sink when
evaluating: Q2∆ ∶= R(a1, a2), R(a1, a3), R(a1, a3), R(a3, a4), R(a3, a5), R(a4, a5).

of f-representations and can be more succinct than f-representations
(Olteanu and Zavodny, 2015). Consider the input relation R in Figure 4.4
and the four-hop query Q4H=R(a1, a2), R(a2, a3),R(a3, a4), R(a4, a5).
A copy of R is shown in Figure 4.14 for convenience. F1, in Figure 4.5a,
is an f-representation for Q4H ’s output following T1 in Figure 4.5b. F1
uses two subquery results multiple times. In Figure 4.5a, all subquery
results rooted at v2 and v4 are exactly the same. These subquery results
can be re-used to further compress F1. A reusable subquery result is
called a definition. We show this in Figure 4.15a, where we use the same
nodes in dashed boxes to indicate a single shared subquery result. The
figure shows a d-representation Fd1 with two definitions:

• D1 = ∪i=k
i=1,a5

(v5i)

• D2 = ∪m=k
m=1,a3 (v3m × v4 × D1)

Given R, F1 has 2k×2k×k = 4k3 (vi) values. After reuse of the subquery
results D1 and D2, the size of the d-representation Fd1 is 2k+2k+k = 5k.
Figure 4.15b shows another d-representation Fd2. This one compresses
F2 re-using two subquery results in it.

Similar to f-representations, one can obtain possible d-represen-
tations of queries by statically analyzing queries. In other words, the



4.4. Background on D-Representations 151

...

v11

v1k

v2 ...

v31

v3k

v4 ...

v51

v5k

Figure 4.14: Copy of relation R(src, dst) from Figure 4.4.

∪a1

v11

×
∪a2

v2

×
∪a3

v31

×
∪a4

v4

×
∪a5

v51 ... v5k

... v3k

×
∪a4

v4

... v1k

×
∪a2

v2

(a) F d1.

∪a3

v31

×
∪a2

v2

×
∪a1

v11 ...v1k

∪a4

v4

×
∪a5

v51 ...v5k

... v3k

×
∪a2

v2

∪a4

v4

(b) F d2.

Figure 4.15: Output of R(a1, a2), R(a2, a3), R(a3, a4), R(a4, a5) as d-
representations F d1 and F d2 following T1 and T2, respectively.
T1 is in Figure 4.6a and T2 is in Figure 4.6a.

common subquery results that can be defined and reused can be iden-
tified by static analysis during query compilation. The rule is this.
Consider an f-tree T and a subtree T rooted at a child of cij of node
ai. If the nodes in T depend only on ai but none of of ai’s ancestors,
then the result of values that will bind to the variables in T is identical



152 Factorization

for a given value of ai, say ai = x. Therefore, it is possible to re-use
the whole subquery results for T for the same value of ai. To make
these dependencies explicit, we annotate f-tree nodes with dependency
information following the notation of Olteanu and Schleich (2016). Fig-
ure 4.16 shows an example denoted by T ↑. Specifically, each node ai is
annotated by a key property that is used to keep track of the subset
of ancestors that the node ai depends on. The above rule can now be
restated as follows. Consider a child cij of ai. If the key associated with
cij only contains ai, then then the result of values that will bind to the
variables in T is identical for a given value of ai, say ai = x, irrespective
of the rest of the values that were bound to the ancestors of ai. The
more general rule is that a subquery result can be re-used for each value
of the key of cij , but sharing is simplest and maximized if the key of cij

contains only a single variable (ai is our case).

a3 ∅

a2 {a3}

a1 {a2}

a4 {a3}

a5 {a4}

Figure 4.16: Extended f-tree example T ↑.

For example, in Figure 4.16, the subtree rooted in a1 only contains
a2. Therefore when a2 = v2, the sub-query results for a1 will be identical.
Therefore, in the d-representation Fd2 in Figure 4.15b, the right a2 = v2
branch can simply point to the left branch. Similarly, the subtree rooted
in a5 only contains a4. Therefore when a4 = v4, the sub-query results
for a5 will be identical and the right a4 = v4 branch in Fd2 points to
the left branch.

4.4.1 Worst-case Size Bounds for D-representations

Similar to the definitions of Nρ∗(Q) and N s(Q), one can define the
worst-case size of d-representations of query results. For simplicity, we
assume all queries contain self-joins and are hence on the same relation
R with N tuples.



4.5. Approach to Adopting D-Representations by Graphflow 153

Definition 4.3. (Minimal worst-case output sizes of d–representations)
Consider Q and an arbitrary valid f–tree T . Let N s(Q)T be the worst-
case size of the output of Q as a d-representation in the structure of T
(re-using subquery results when possible) across all possible database
instances where each relation in Q contains N tuples. Then N s↑(Q) is
the minimum such worst-case size under the “best” valid f-tree for Q,
i.e., s↑(Q) = minT s(Q)T where the minimum is taken over all valid
f–trees for Q.

In general, one can establish that s↑(Q) ≤ s(Q) ≤ ρ∗(Q). Further,
there exists queries such that each representation system is strictly
more succinct than the next. For example, the AGM bound of Q4H is
ρ∗(Q4H) = N4. The worst-case output size of the best f-representation
of Q4H is N2, which can be obtained using the f-tree T2 in Figure 4.6b.
In contrast, the worst-case output size of the best d-representation of
Q4H is N , which can be obtained using either of the f-trees T1 or T2.

4.5 Approach to Adopting D-Representations by Graphflow

There is little work on adopting d-representations in query proces-
sors. We briefly cover the only work that has proposed to adopt d-
representations, done in the context of the Graphflow system (Mhedhbi,
2023). The core approach in this work is to have DAG-style query plans
where some join operators have caches that store re-usable subquery
results. If a subquery result has been cached before, a sequence of
operators are skipped. The approach is built on top of the factorized
vector execution model. We cover the approach that works for linear
plans, which captures the key technique. Mhedhbi (2023) proposes fur-
ther extensions to plans with HashJoin operators that form plans with
branches.

Let us return back to the query Q4H , this time on the R(src, dst)
relation from Figure 4.14, which contains 4 paths. Consider using the a1
to a5 linear f-tree T1 from Figure 4.15. Figure 4.17a shows a Graphflow
plan for this query that only uses f-representations as in Section 4.3.2.
Figure 4.17b shows an extension of this plan into a DAG-style plan that
caches some common subquery computations in the Extend operators.



154 Factorization

Scan (a1)

Extend (a1→a2)

Extend (a2→a3)

Extend (a3→a4)

Extend (a4→a5)

Sink

(a) P .

Scan(a1)

Extend (a1→a2)

Extend (a2→a3)

Extend (a3→a4)

Extend (a4→a5)

DGroup a5 by a4

DGroup a4 by a3

DGroup a3 by a2

Iterator

Sink

(b) DF .

Figure 4.17: Graphflow WCOJ and DAG-version for Q4H .

The sequence of joins that are performed across the two plans is
exactly the same. The primary difference is that the extended plan
contains a sequence of DGroup operators that are appended after some
of the Extend operators. The DGroup operator takes in a set of vector
groups as other operators and constructs one level of a trie by grouping
by a single value of ai a set of values of aj . We say that a DGroup
operator groups aj by ai. For example, the top DGroup operator groups
a3 values by a2. The previous DGroup operator groups a4 values by a3.
A sequence of DGroup operators form a trie. This trie is based on a
hash index (see Mhedhbi, 2023, for the implementation details). Tries
are caches that previous Extend operators use to check if a particular
subquery has been previously computed or not.

For example, the second Extend operator (a2→a3), which extends
a2 values to a3 values, checks if the cache contains an a2 value for



4.5. Approach to Adopting D-Representations by Graphflow 155

each a2 value it processes. If not, then the computation continues as in
Section 4.3.2. For example, consider the beginning of the execution of
the pipeline. Scan and the first Extend operator pass (a1 = v11 , a2 = v2)
tuple to Extend (a2→a3) (in factorized vector representation). Since
the cache is currently empty, Extend (a2→a3) will continue regular
processing. It will write v31 , ..., v3k

to a new vector group storing a3
bindings. The next Extend a3 will also continue regular processing,
flatten this vector group to position = 0, so effectively pass (a1 = v11 ,
a2 = v2, a3 = v31) to the next Extend operator. Later on during this
pipeline, the sequence of DGroup operators start accumulating the tuples
that are passed in and construct a trie. The final trie that is formed is
shown in Figure 4.18 pictorially.

v2

×
∪a3

v31

×
∪a4

v4

×
∪a5

v51 ... v5k

... v3k

×
∪a4

v4

Figure 4.18: Output of the d-representation cached as part of evaluating Q4H on
R in Figure 4.14.

Consider the next time Extend (a2→a3) receives a tuple with a2 = v2,
e.g., (a1 = v12 , a2 = v2). Since the cache now contains the set of a3,
a4, and a5 values for a2 = v2, Extend (a2→a3) directly passes the tuple
(a1 = v12 , a2 = v2) to the Iterator operator after the sequence of
DGroup operators, which copies the a3, a4, and a5 values to their vector
groups from the cache and continues pipelining these factorized vectors



156 Factorization

to the next operator, which is Sink in this case. Although omitted
from our description of the execution in the previous paragraph, the
same logic of checking the cache and skipping a sequence of operators
happens at each Extend operator. For example, during the construction
of the trie for a2 = v2 in the cache, other Extend operators, such as the
one extending a4 to a5 would skip computing the extension of a4 = v4
values to a5 values if this computation was done and cached previously.

We next discuss several implementation details. First, although our
example described this approach for join-only queries, there can be
other operators in the plans such as filters. For example, if the query
was computing 4-paths where the a3 nodes have some property, a filter
operator after the Extend operator could be in the plan without affect-
ing the caching and placement of the DGroup operators. The important
criteria is that the filter does not violate the dependency relationships
in the f-tree. This point is related to plan generation. Graphflow gener-
ates these plans in a rule-based manner. First the system generates a
plan with no consideration for caching opportunities, using a dynamic
programming-based join optimizer that aims to minimize the number of
factorized tuples passed between operators (recall from Section 4.3.2).
Then the system analyzes the dependencies between the operators in
each linear pipeline to identify if there are any sequence of operators
whose results can be cached and reused. If so, the system puts a DGroup
operator to the end of such pipeline with the necessary directed edge
from a previous Extend operator. Finally, similar to our note on f-
representations, the key approach presented above can be adopted as
is in plans that have worst-case optimal join operators. We refer the
readers to Mhedhbi (2023) for examples of such queries and plans.

4.6 Data-dependent Compression

The approaches that we have seen so far are what may be called
data-independent or schema-driven approaches. For both f- and d-
representations, we only need to analyze the query and the base relations
to choose an f-tree and use it for factorization. Although the data does
impact the sizes of the f- or d-representations and would influence any
optimization decisions, the compression that they enable is based on the



4.6. Data-dependent Compression 157

relationships between the attributes in the relations and the query itself.
This makes the approach very attractive and easy to use. However, it
does limit the applicability somewhat. For instance, consider the query
Q(a1, a3) ∶= R(a1, a2), R(a2, a3). In this case, we are projecting out
the join attribute and the approach we have discussed cannot help in
compressing the final result in a duplicate-free manner. Next, we briefly
discuss a data-dependent approach, called GraphGen (Xirogiannopoulos
and Deshpande, 2017; Xirogiannopoulos et al., 2017), that was designed
for this type of a query.

GraphGen was motivated by the observation that, although analyz-
ing interconnection structures between entities in a dataset (i.e., the
graph structure over them) can provide important insights, graphs are
not the primary representation choice for storing most data; instead
graphs must first be explicitly constructed by fetching the relevant data
from the underlying database, and appropriately creating the nodes
and the edges in the graph. Because these joins are also typically m-n
joins, the resulting “hidden” graphs can often be much larger than the
initial input, making it a challenge to construct them fully (i.e., in the
flat representation).

We use an example from Xirogiannopoulos and Deshpande (2017)
to further motivate this problem, and the solution. Here the base table,
AuthorPub, contains information about authors and their publications.
A typical graph that one might want to analyze here (e.g., using a
community detection algorithm) is the co-authors graph, where there is
a node for each author, and an edge between them indicates at least
one co-authored paper. Figure 4.19 shows an instance of such a table,
as well as the co-authors graph on that instance where the edges are
created using a self-join followed by a projection. To avoid clutter and
to match the query, we show all of these graphs with two copies of
each author node (corresponding to ID1 and ID2); however, those two
would be merged in the graph data structure that is finally built.

Figure 4.19 shows a possible compact representation, called C-DUP,
where nodes corresponding to the publications are not projected out.
The graph traversal algorithms can be easily modified to pass through
such nodes (see Xirogiannopoulos and Deshpande, 2017, for more details
as well as for details on how to support a vertex-centric API on such



158 Factorization

20

Edges(ID1, ID2):- AuthorPub(ID1,PubID),
  AuthorPub(ID2, PubID).

AuthorPub

Author

Publication
Flat Representation

Expanded Graph

Query to extract co-author graph edges

p1

p2

p3

C-DUP Representation
(with duplicates)

DEDUP1

Flat Representation

Figure 4.19: Example reproduced from GraphGen (Xirogiannopoulos and Desh-
pande, 2017)

representations). However, the problem with this representation is that,
there are duplicate paths between the same two author nodes (e.g., a1
and a4). This makes it a challenge to run further processing because
most operators we may wish to execute after this join (e.g., sum or
count aggregates) would require eliminating possible duplicates in the
result. A similar situation arises if a system used this representation
to run batch graph algorithms, e.g., to compute PageRank or find the
connected components of the graph.

Figure 4.19 also shows a duplicate-free compact representation, called
DEDUP1; this representation is obtained, in essence, by analyzing the
C-DUP representation and removing the duplicate paths between nodes
while adding as few direct edges as possible. Minimizing the number
of edges added is, however, NP-Hard, and the algorithms presented in
that work are all heuristics. In fact, most general variations of graph
compression are known to be NP-Hard. Xirogiannopoulos and Desh-
pande (2017) also discuss alternate bitmap-based representations that
are easier to construct, but require more work during execution of graph
algorithms, and also show several orders-of-magnitude improvements in
memory consumption compared to generating the flat representation.



4.7. Other Work and Open Problems 159

The deduplication cost, however, limits the applicability of this
approach to scenarios where the resulting graph is materialized and
analyzed repeatadly, or there is a need to run complex multi-pass
graph algorithms on that graph. At the same time, this line of work
highlights how data-dependent compression may be exploited to reduce
the in-memory representations of intermediate results where the data-
independent approach is not applicable.

4.7 Other Work and Open Problems

We end this section by providing pointers to several related works that
use factorized representations, and then describe several open problems
related to the adoption of f- and d-representations.

Answer Graph (Abul-Basher et al., 2021) is a recent system that
extends PostgreSQL’s query processor for a join-only subset of SPARQL
(i.e., without projections) that performs a two-stage query evaluation
for acyclic queries. The first stage is a full semi-join reduction, similar
to Yannakakis’s algorithm, that identifies only and all of the edges
that participate in the final output. This is done by performing a
sequence of “forward extensions” according to a join order that is picked
by a traditional cost-based optimizer. After this step, a second stage
generates a set of flat tuples by executing a left-deep join plan. The
result of the first phase of Answer Graph is similar to d-representations
and the following enumeration phase flattens all results. The authors
also describe an envisioned but not implemented version of semi-join
reduction for cyclic queries, which is based on a more complex cascading
logic which pipelined approaches do not need to handle.

At a high level, d-representations are based on caching and re-using
common subquery results in queries. CTJ, which was introduced in
Section 3 (Kalinsky et al., 2017) is an alternate technique that can
speed up WCOJ plans by reusing partial results. The difference is that
its partial results are stored as flat tuples. However, it is based on a
similar idea as expression reuse based on attribute dependency in f-trees,
i.e., extensions/joins to additional attributes can be repeated for future
tuples.



160 Factorization

Factorized representations can also be used in machine learning
workloads and data science applications. The LMFAO engine (Schleich
and Olteanu, 2020) is optimized to execute batches of group-by aggre-
gates over joins within data science pipelines. F-IVM by Nikolic et al.
(2020) and Kara et al. (2023) is a state-of-the-art incremental mainte-
nance technique that uses factorization. F-IVM is based on high order
delta decomposition technique, which was introduced by Ahmad et al.
(2012) in the DBToaster system. In constrast to DBToaster, F-IVM
keeps results of delta queries in factorized form. Similarly, factorized rep-
resentations were used for result materialization for dashboards (Huang
and Wu, 2023).

While the seminal work of factorization representation has been
introduced a decade ago, there has been very few adoption approaches
within systems and many open problems still remain:
● The most obvious open problem is to propose alternative approaches

to integrate factorized representations in query plans in existing
systems. The two approaches for f-representations and one approach
for d-representations have many limitations and more systems work
is needed to make factorization more practical and easier to integrate
into systems.
● The optimization of plans that benefit from f- and d-representations

is not well understood. The proposed approaches so far are either
cost-based using very coarse metrics, such as minimizing worst-case
sizes, or using rule-based optimizers, such as the one we described
from Graphflow in the last section. These are not robust approaches,
since worst-case sizes ignore the statistics about the actual database
and the latter is not conscious of any caching opportunity during
optimization. Novel approaches that take into account the size of
intermediate results based on the f-tree used might lead to picking
different plans and better performance.
● In this survey, we primarily covered approaches that aim to op-

timize m-n joins. Many analytical queries contain aggregations.
Factorization can improve aggregations over queries with m-n joins
significantly (Bakibayev et al., 2013, Gupta et al., 2021, Kara et al.,
2023). In fact, aggregation queries are probably the most promising



4.7. Other Work and Open Problems 161

class of queries where factorization can improve existing systems.
However, some of these benefits can also be achieved by pushing
down aggregates beyond some of the joins in plans. It is however
not well understood whether factorization provides new benefits to
query processors on aggregations beyond pushing-down aggrega-
tions. Understanding whether the benefits are the same theoretically
and empirically is an important future direction of study.
● While we covered some connections between MVDs and factorized

representation, the connection between MVDs and d-representations
is less clear. Unifying these different notions of conditional indepen-
dences with possibly some new formalism and theories could help
our understanding of these techniques.



5
Execution of Regular Path Queries

In this section, we expand our focus beyond the previously discussed
subgraph pattern-based queries, which translate into multi-way join
queries without recursion. We delve into the execution of regular path
queries (RPQs) in graph databases, which is a significant class of queries
in graph databases that has gained prominence in recent years. RPQs
form a subset of recursive queries that has been studied extensively
in prior research, whose semantics are well covered in modern query
languages of GDBMSs, and that have been integrated into several
DBMSs. We also briefly discuss several works on shortest path queries
that have been integrated into DBMSs.

RQPs involve identifying paths and/or source-destination pairs in
a graph, where the paths adhere to specific properties defined by a
regular expression. Conceptually, a regular path query is structured as
⟨?source, regex, ?dest⟩, where ?source and ?dest are vertices within
the graph (that may be constants or unbound). The objective is to
determine the ⟨?source, ?dest⟩ pairs that are connected by a path that
conforms to the regular expression applied to the path labels, and
potentially to retrieve such paths.

162



163

For instance, consider a graph as depicted in Figure 5.1. One
example of a regular path query could be ⟨‘Mahinda′, Follows∗ ⋅
Lives, ‘NewY ork′⟩, which seeks to establish if there is a path from
‘Mahinda’ to ‘New York’ through other vertices where the labels of
the edges on the path satisfy the regular expression Follows∗ ⋅Lives,
i.e., a path with any number of ‘Follows’ edges, followed by a single
‘Lives’ edge. Another query, ⟨?src, Follows∗ ⋅Lives, ‘NewY ork′⟩, aims
to identify all nodes connected to someone living in ‘New York’ through
one of more ‘Follows’ edges. While these regular expressions could
include labels on both nodes and edges, for simplicity, we focus on
expressions pertaining solely to edge labels, assuming each edge bears a
single label. A key challenge with regular path queries lies in their se-
mantics, particularly in defining paths within graphs, a topic we explore
in Section 6.1. Furthermore, the intricacies of identifying and selecting
paths, as opposed to merely finding source-destination pairs that satisfy
the query, add layers of complexity. This complexity is evident even
in the simplest formulations, where the problem can escalate to being
NP-hard.

Works

Lives

Follows Follows

Mahinda New York

FollowsKarim

Acme

Follows

Lives

Carmen

Zhang

Figure 5.1: An example directed edge-labeled graph

The rising importance of regular path queries is underscored by
their inclusion in various query languages, such as SPARQL (W3C,
2024) (through the notion of property path queries) and the newly
standardized Graph Query Language (GQL) (JCC Consulting, Inc.,
2024), as well as SQL extensions for graph querying like SQL/PGQ
(ISO/IEC JTC 1/SC 32, 2024). Given this burgeoning interest and



164 Execution of Regular Path Queries

the ongoing development in this field, this section will provide an in-
depth examination of regular path queries, highlighting the substantial
opportunities for further research in this area.

5.1 Background

Regular path queries have been a subject of study in the database
literature for decades, tracing back to the seminal work by Mendelzon
and Wood (1995). For simplicity, in this section, we focus on edge-
labeled directed graphs, where each node and edge is associated with a
unique identifier, and further each edge is labeled with a single label
from a predefined set of symbols, Σ. Formally, we define a database
graph to be a tuple G = (V, E, ℓ), where V is a set of vertices, E is a
set of (directed) edges, and ℓ ∶ E → Σ is a labeling function that maps
each edge to a label from Σ. Note that, there may be more than one
edge between a pair of vertices, and self-loops are allowed.

A path P in G is a sequence of nodes and edges v1, e1, v2, e2, . . . , ek−1,

vk such that for all i ∈ [1, k − 1], the source and destination vertices
of ei are vi and vi+1 respectively. The label associated with a path
P is the concatenation of the labels of the edges in P , i.e., ℓ(P ) =
ℓ(e1) ⋅ ℓ(e2)⋯ℓ(ek−1).

A regular expression R over Σ is defined inductively as follows in a
standard manner:

• ∅ is a regular expression.

• ϵ is a regular expression.

• For every a ∈ Σ, a is a regular expression.

• If R1 and R2 are regular expressions, then so are R1 ⋅R2 (concate-
nation), R1∣R2 (alteration), R∗1 (Kleene or transitive closure), R+1
(equivalent to R1 ⋅R∗1), and R1? (0-or-1).

SPARQL also supports a more general form of Kleene closure that allows
the user to specify a range of repetitions, e.g., Rm,n

1 , which denotes m

to n repetitions of R1. For simplicity, we omit this and other extensions
to regular expressions in our discussion.



5.1. Background 165

Given the above definition, the most general form of a regular path
query requires the user to specify:

1. The start and end points of the path, which may be constants or
variables.

2. A regular expression formulated over Σ.

3. Restrictor: There are four distinct types of restrictions that can
be imposed on the path, adopted by different query languages,
with GQL necessitating an explicit choice by the user. These
restrictions include:

• walk, where the path P is not subject to any restrictions.
• trail, in which P does not repeat any edge.
• acyclic if P does not revisit any node.
• simple if it does not revisit any node with the exception of

the start and end points (i.e., we allow v1 = vk).

4. Selector: In addition, some of the query languages also allow
returning the matching path(s) in addition to the start and end
points. In that case, the options are:

• any, where any path that satisfies the query is returned.
• any shortest, where any shortest path that satisfies the query

is returned.
• all shortest, where all shortest paths that satisfy the query

are returned.

In addition to these, GQL also supports a form of top-k queries,
where the user can specify a positive integer k and the query
returns the k shortest paths that satisfy the query.

The possible combinations of the above options lead to a large
number of query types, which makes the problem of evaluating regular
path queries challenging. For many of the combinations, the problem is
known to be NP-hard, especially when the query is restricted to simple
paths or trails. Even a simple regular expression like (aa)∗ is NP-hard



166 Execution of Regular Path Queries

to evaluate on simple paths (Mendelzon and Wood, 1995) (since it is
equivalent to finding a simple path between two nodes in a graph of
even length; Lapaugh and Papadimitriou, 1984). We refer the readers
to Farias et al. (2023) for a more detailed discussion of the complexity
of regular path queries under different restrictions.

In the rest of this section, we discuss the basics of the two main
approaches that have been proposed to evaluate regular path queries.
The first approach is based on use of finite state automata, whereas the
second approach uses an extended relational algebra. We also briefly
discuss some of the recent work that has been proposed to improve the
scalability of these approaches.

5.2 Automata-based Techniques

The first approach to evaluate regular path queries is based on the use
of finite state automata (Mendelzon and Wood, 1995). This method,
often called product construction, “multiplies” the database graph G

and a non-deterministic finite state automaton (NFA) A that recognizes
the regular expression R to create a new graph G×A = GA. The nodes
of GA are pairs (v, q), where v ∈ V and q is a state of A. There is an
edge from (v1, q1) to (v2, q2) in GA if there is an edge from v1 to v2
with label l in G and there is a transition from q1 to q2 labeled l in A.
We assign the label l to this edge in GA.

Figure 5.2 shows a portion of this construction for the graph in
Figure 5.1 and the regular expression (Follows ⋅ Follows)∗Lives, for a
graph traversal starting at node Mahinda. For example, we have an edge
from (Mahinda, q0) to (Karim, q1) because Mahinda follows Karim,
and there is a transition from q0 to q1 in the NFA with label Follows.
Only the labels in the regular expression appear on the edges of GA. We
also note that (Carmen, q0) has an edge to (NewY ork, q2), however,
there is no edge in this graph from (Carmen, q1) to (NewY ork, q2),
since the NFA does not have a transition from q1 to q2 labeled Lives.

Now, consider a path from (v1, q0) to (v2, q2) in GA, and further,
let q2 be a final (accepting) state for the NFA. Then, the label of the
path from v1 to v2 in G is in L(R), i.e., the path satisfies the regular
expression R (intuitively, we are traversing both the graph and the NFA



5.2. Automata-based Techniques 167

Followsq0 q1

Follows

q2

Lives

(Mahinda, q0)

Follows

Follows(Karim, q1) (Carmen, q0)

Follows (Carmen, q1) Follows (Zhang, q0)

(New York, q2)Lives

(i) (ii)

Figure 5.2: (i) An NFA for the regular expression (F ollows ⋅ F ollows)∗ ⋅Lives; (ii)
Portion of the product graph relevant to exploration from node Mahinda

at the same time). Thus, the problem of evaluating a regular path query
can be reduced to the problem of finding a path in GA from (v1, q0)
to (v2, q2), where q2 is a final state, which can be done using standard
graph traversal algorithms like breadth-first search.

This algorithm runs in polynomial time in the size of the graph and
the NFA (specifically, O(∣G∣∣A∣), where ∣G∣ and ∣A∣ denote total number
of nodes and edges in G and A respectively), and is thus practical.
Furthermore, we can also construct the product graph on demand, i.e.,
as it is being traversed. In fact, it is not necessary to explicitly construct
the product graph at all, since we can simply keep track of the current
state of the NFA as we traverse the graph.

However, one important caveat here is that the path that we find
here is without any restrictions (i.e., the “walk” semantics from above).
The algorithm can be extended to handle the other restrictions, however,
it does not retain its polytime complexity in that case. For example, if
we want to find a simple path, then we need to ensure that the path in
GA does not revisit any node in G. The only known way to do it is by
finding all paths from (v1, q1) to (v2, q2) (where q2 ∈ F ) in GA and then
checking if any of them are simple. We refer the reader to Mendelzon
and Wood (1995) for a more detailed discussion of the cases where the
algorithm retains its polytime complexity.

This algorithm can also be extended to return a path, a shortest
path, or all shortest paths, instead of just the start and end points. In
that case, we need to keep track of the path traversed in G and the
states traversed in A at each step. We refer the reader to Farias et al.
(2023) for more details.



168 Execution of Regular Path Queries

5.2.1 Similarities to Relational Query Execution

Although the graph-traversal based algorithm might seem very different
from how relational queries are executed, we can draw parallels between
the two under certain assumptions about the specifics of how the
traversal is done. In particular, we can view the traversal as a form of a
series of joins with an edges relation (in the form of a recursive query).
Specifically, let RG(src, dest, label) denote a table representation of the
graph G, where each tuple represents an edge from v1 to v2 with label
label. Further, let’s assume we are traversing the graph in a breadth-first
manner and neither the source nor the destination vertex is fixed. Let’s
say there are two transitions from q0, to q1 and q2, with labels l1 and
l2, respectively. Then, the first step of the breadth-first traversal can be
seen as (with some liberties taken with the syntax):

\small
R_1 = select distinct src,dest,(label=l_1) ? q_1 : q_2 as q
from R_G
where label in [l_1, l_2]

Say now there are two transitions from q1, to q3 and q4, with labels
l3 and l4, respectively, and two transitions from q2, to q5 and q6, with
labels l5 and l6, respectively. Then, the second step of the breadth-first
traversal can be seen as the join:

\small
R_2 = select distinct R_1.src,R_G.dest,new q

(e.g., q_3 if R_q = q_1 and R_G.label = l_3)
from R_1, R_G
where R_C.dest = R_G.src and

((R_1.q = q_1 and R_G.label in [l_3, l_4]) or
(R_1.q = q_2 and R_G.label in [l_5, l_6]))

minus
select * from R_1

In general, except for the initialization step, the same join will be
evaluated at each step of the traversal, with the join condition being



5.2. Automata-based Techniques 169

a disjunction of conjunctions of the form (R.q = qi and RG.label = lj),
where qi is a state in the NFA and lj is a label in the regular expression.
The set minus operation ensures that we do not revisit any node in the
product graph (starting with the same node). The traversal terminates
when there are no more tuples in the result, i.e., the fixpoint is reached.

5.2.2 Performance Considerations

Although simple and elegant, the graph-traversal based algorithm as
described above can have significant performance issues for large graphs.
In particular, the “query plan” is fixed and dictated by the NFA, and
thus, the algorithm cannot take advantage of any order optimizations
or memoization opportunities. For example, consider a simple regular
expression α ⋅ β ⋅ γ ⋅ λ. The algorithm will first find all 4-paths matching
α ⋅ β ⋅ γ (i.e., paths with 3 edges with labels α, β, γ in that order), and
then filter out the ones that cannot be extended with λ. However, if
the first three labels are very common and the last label is very rare,
then the algorithm will have to traverse a large portion of the graph
before finding any paths that satisfy the query (or finding that there
are no paths that satisfy). Koschmieder and Leser (2012), among others,
have looked at ways to optimize the traversal-based algorithms, e.g.,
through identifying rare labels and traversing the graph backwards and
forwards from the edges that satisfy those labels to identify the paths
that satisfy the query.

Second, consider the regular expression from above, (Follows ⋅
Follows)∗ ⋅ Lives. Starting with all the nodes in the graph N , the
algorithm will traverse the graph to find the set of nodes reachable
through two Follows edges, say N1, and then again look for nodes
reachable through two Follows edges from N1, and so on (to find the
closure). It may be advantageous to first find all the pairs of nodes
connected by two Follows edges, and do a Kleene closure on those.
However, the algorithm does not have the flexibility to do that. The
relational algebra-based techniques we discuss next naturally support
such optimizations.



170 Execution of Regular Path Queries

5.3 Relational Algebra-based Techniques

The second approach to evaluate regular path queries is based on the use
of an extended relational algebra, with transitive closure as a primary
new operator. This methodology, pioneered by Losemann and Martens
(2013) for evaluating path expressions in SPARQL, has underpinned
substantial subsequent research, especially in the domain of SPARQL
query processing. The approach systematically evaluates the regular
expression by progressively identifying all node pairs satisfying segments
of the expression, commencing with the most nested regular expressions.

For instance, consider our ongoing example with the regular expres-
sion (Follows ⋅ Follows)∗ ⋅Lives. The process initiates by identifying
all node pairs (u, v) where there is an edge from u to v labeled Fol-
lows. Subsequently, it assesses the sub-expression Follows ⋅ Follows,
effectuating a self-join on the result, thereby yielding node pairs (u, v)
connected via an intermediary node w, with both edges labeled Follows.

Following this, the approach incorporates the transitive closure
operator to identify node pairs (u, v) connected by an even-length path,
exclusively comprising edges labeled Follows. It’s important to note that
this path need not be simple; repetition of edges and nodes is possible.
The transitive closure evaluation can be done, for example, through use
of a standard semi-naive fixpoint evaluation technique.

After determining node pairs satisfying (Follows ⋅ Follows)∗, the
method concurrently identifies pairs conforming to the regular expression
Lives, and subsequently joins these two intermediate results to finalize
node pairs fulfilling the entire path expression. Figure 5.3 depicts this
plan, where α denotes the transitive closure operator.

As elucidated in the referenced work, this approach is adaptable for
more intricate regular expressions, including those imposing constraints
on path lengths. For example, an expression like (Follows ⋅Follows)3,5

that seeks paths of lengths 6, 8, or 10, can also be evaluated through
use of matrix exponentiation. This method operates in polynomial time
relative to the graph’s size. However, because it does not restrict reuse
of edges in any way, this approach is applicable solely for the “walk”
semantics among the path types discussed earlier.



5.3. Relational Algebra-based Techniques 171

G G

G

Figure 5.3: A relational algebra-based query plan for the regular path query
(F ollows ⋅ F ollows)∗ ⋅ Lives. We omit explicit “distinct” operators here – ideally,
duplicates are eliminated as early as possible in the plan.

5.3.1 Performance Considerations

The relational algebra-based approach, as described above, can be
seen as “materialization”-based approach, where every subexpression is
computed in its entirety and materialized as a relation, and then the next
subexpression is computed on top of that. Overall the approach is more
amenable to optimizations than the graph-traversal-based approaches.
For instance, given a simple query like α ⋅β ⋅ γ ⋅λ, the relational algebra-
based approach can execute the joins in different orders (e.g., doing the
join between pairs of nodes that satisfy γ and λ subexpressions first if
there are fewer tuples in the result of the λ subexpression).

As described above, the nesting of the regular expression does impose
some constraints on the order of evaluation. For instance, the expres-
sion (Follows ⋅ Follows)∗ ⋅Lives must first evaluate the subexpression
(Follows ⋅ Follows)∗ before evaluating the join with the subexpression
Lives. If Lives is a rare label, then the transitive closure computation
may be redundant for many node pairs. A computationally more effi-
cient plan might be to first enumerate the node pairs (u, v) that satisfy
Lives, and then traverse “backwards” from each of the u nodes to find



172 Execution of Regular Path Queries

the node pairs (w, u) that satisfy (Follows ⋅ Follows)∗. This can be
seen as a form of sideways information passing, but is not possible in
the bottom-up approach described above.

5.4 WaveGuide: Combining the Two Approaches

The above discussion, and the differences between the automata-based
and the relational algebra-based approaches, naturally raises the ques-
tion of whether it is possible to design a query execution algorithm
and a corresponding plan space that subsumes both of them. This is
precisely the motivation behind the work by Yakovets et al. (2016b),
that we briefly discuss next. In addition to identifying and differenti-
ating between the plan spaces explored by the above two approaches,
the proposed system, called WaveGuide, explores a plan space that
subsumes both of these plan spaces and does a cost-based optimization
to choose an appropriate plan for a given query.

Specifically, for a given regular path query, WaveGuide uses a
“waveplan” that consists of multiple automata, called Wavefronts, that
may be independent and can be executed concurrently, or may de-
pend on each other. We illustrate this using our running example.
Figure 5.4 shows several different waveplans for executing the query
(Follows ⋅ Follows)∗ ⋅ Lives. The first waveplan, which emulates the
automata-based approach, has a single wavefront that conceptually
starts from all nodes in the graph and traverses the graph to find all the
node pairs that satisfy the regular expression. The traversal follows a
guided semi-naive evaluation strategy, where we start with a set of initial
nodes (“seeds”), which in this case comprises of all nodes that have
an outgoing Follows edge. Then we take one step in the breadth-first
traversal as discussed earlier for the automata-based approaches, identi-
fying all node pairs (u, v) where v is reachable from u through a single
Follows edge. A cache is maintained to avoid redundant computations;
all node pairs that are generated at a step are compared against the
cache to identify the new node pairs to process in the next step (and to
add to the cache). The process continues until a fixpoint is reached.

The second waveplan uses two wavefronts, one for computing the
result of the query Follows ⋅ Follows (W1), followed by a second wave-



5.4. WaveGuide: Combining the Two Approaches 173

Follows   q0 q1

Follows   

q2

Lives   

P1

U

xa

q0 q1Follows   

U

q2Follows   
W1:

W2:

q0 q1Lives  

U
W1 

P2

   Livesq0 q1

   Follows

q2

P3

U

    Follows

Figure 5.4: Three WaveGuide Plans: P1 emulates a standard automata-based
approach, P2 emulates a relational algebra-based approach, and P3 shows a plan
that traverses the graph in the opposite direction.

front (W2) that, in effect, computes the transitive closure of the result of
the first wavefront, and then filters it by checking which of the resulting
node pairs can be extended with a Lives edge. This is done by treating
the result of the first wavefront as a path view that gets populated
as the first wavefront start producing results. The ability to do this
implies that the space of plans used by WaveGuide subsumes that of
the relational algebra-based approach.

Another important aspect of a wavefront is the ability to contol
the direction in which the graph is traversed. Figure 5.4 shows a third
waveplan (P 3) for the same query, which uses the same NFA as the first
plan, but traverses the graph in the opposite direction, starting from
the Lives edges. The traversal direction is indicated by the location of
the ‘⋅’. Specifically, Lives⋅ denotes a forward traversal of the edge, where
⋅Lives denotes a backward traversal. The third waveplan, thus, begins
with first identifying all node pairs (u, v) where there is a Lives edge
from u to v. For each such (u, v), it then looks for all Follows edges
that end at u, traversing the graph in the backward direction for those
edges, and so on. This ability to flexibly traverse the graph forwards or
backwards enables Waveguide to address one of the major performance
concerns of the automata-based approaches noted above.



174 Execution of Regular Path Queries

The overall flexibility and significantly richer plan space of WaveG-
uide, makes it a promising approach for executing RPQs. However, the
authors leave open the questions of how to enumerate valid waveplans
for a given query, and how to choose the best waveplan for a given
query. Another natural question is whether there is any “plan” that is
not expressible in the waveplan space, i.e., whether the waveplan space
is “complete”.

5.5 Other Work

We briefly summarize some of the other works on RPQs for reference.
We also briefly discuss shortest path queries, which is another class of
popular recursive queries supported by modern GDBMSs.

As noted earlier, Koschmieder and Leser (2012) propose using rare
labels to optimize the graph traversal-based approach. In a recent
work, Arroyuelo et al. (2022) develop an improved automata-based
approach that uses a novel compressed representation of the graph
called a ring along with a Glushkov automaton to efficiently execute
RPQs; the use of Glushkov automata enables a more space-efficient
bit-parallel simulation of the NFA resulting in a significant speedup
over the standard automata-based approach. Yakovets et al. (2013)
present an SQL implementation of the relational algebra-based approach
from Losemann and Martens (2013) by translating a SPARQL property
path query to a recursive SQL query. Nguyen and Kim (2017) propose
a cost-based approach to deciding how to split a query using rare labels.
Dey et al. (2013) investigate several different variations of standard
RPQ queries, including variations that return the edges along the paths
between the node pairs. They use the term “provenance” to refer to the
paths, also called “witnesses” in a later work by Farias et al. (2023).

There has also been a lot of work on a restricted class of RPQs called
label-constrained reachability queries. The query is to find whether two
nodes are reachable through a path, where each edge has a label from a
set of labels ℓ1, ℓ2, ..., ℓk. Equivalently the RPQ is of the form (ℓ1|ℓ2|
... |ℓk)∗. Valstar et al. (2017) and Peng et al. (2020) study developing
indices to process such RPQs faster and at scale. The standard algo-
rithm to evaluate label-constrained reachability queries are breadth-first



5.5. Other Work 175

search (BFS) traversal based algorithms. Zou et al. (2014b) develop a
more advanced algorithm based on decomposing an input graph into
strongly connected components and computing the label sets within
each component. There has also been extensive work on standard reach-
ability queries, which ignore labels. We refer readers to Yu and Cheng
(2010) for a survey of this literature.

Finally, modern GDBMSs have special clauses or functions for short-
est path queries, which form another class of popular recursive queries.
Many existing systems such as Neo4j, Kùzu or Memgraph compile those
clauses to specialized operators. These operators implement specialized
shortest paths algorithms, such as Dijkstra’s or Bellman Ford’s shortest
paths algorithms or their variants, such as bidirectional BFS algorithms.
There is little technical writing on system integration approaches and
implementation details of these algorithms but these systems have open-
source repos, which contain their implementations. Wolde et al. (2023)
is a recent project to implement a GDBMS layer over the DuckDB
RDBMS (Raasveldt and Mühleisen, 2019a). The overarching goal of this
project is to implement SQL/PGQ, which is a new extension to SQL to
support property graph modeling and querying. DuckPGQ implements
Multi-source BFS algorithm by Then et al. (2014) and its variants to
find shortest path queries. However many aspects of integrating and
optimizing shortest path algorithms in the context of DBMSs query pro-
cessing is not well studied. For example, how to parallelize these queries
is not well understood. Further the graph algorithms literature is full of
techniques for fast shortest path computations, such direction optimized
search algorithms. It is not clear whether systems can integrate such
algorithms based on a set of primitive relational operators. This would
simplify both integrating these optimizations into systems as well as
enabling systems to automatically compose new optimizations. These
are good directions for future systems-oriented research direction.



6
Conclusions

In this monograph, we covered a suite of modern query processing
techniques that are particularly optimized for modern DBMSs that aim
to support graph workloads. These are workloads on datasets that are
naturally modeled as graphs and share the common characteristic of
containing complex many-to-many or recursive join queries. Our tech-
niques included pointer-based joins, WCOJ algorithms, factorization,
and automata- or α-join based querying.

The first key takeaway we would like to emphasize to readers is that
all of these techniques are based on relational principles. They are based
on creating well-understood join indices, joins on multiple columns of
relations, compressing intermediate relations, or extending relational
algebra with an α operator (or using a specialized automata-based joins).
This observation is important for two reasons. First, it solidifies our
community’s common understanding that scalable and performant data
management, even if designed for datasets that are naturally modeled
as graphs, should be based on relational principles. In fact, existing
GDBMSs are indeed relational at their core since, aside from several
specialized operators such as a shortest path algorithm, they process the
records they manage using standard relational operators. Second, many

176



177

of these techniques have been developed in the context of relational
systems, so we can expect that over time some of these techniques will be
adopted by traditional relational systems as well. Our conviction is that
over the next decade, systems that aim to optimize for graph workloads
need to adopt these techniques or their variants to be competitive in
their performances.

A second key takeaway is that although there is good understanding
of the foundations of these techniques, the topic of how to integrate
into systems is still in its experimental stage. It is difficult to highlight
a common wisdom approach the community has agreed on about how
to integrate these techniques into systems. For example, except for one
work, there is no work on how to integrate d-representation-based query
processing, and no work on how to develop optimizers to generate plans
that use d-representations during query processing. Similarly, there
are no clear principles about how the optimizers of systems should be
developed if WCOJ algorithms were part of the suite of join operators
in a DBMS. Many questions also remain on recursive queries, where
the field has seen less work than the rest of the topics we covered.
These include very core DBMS topics, such as whether one can develop
practical join indices for these queries or how to parallelize these queries
efficiently with existing parallelization techniques, such as morsel-driven
parallelism. We hope these questions can inspire future work.



References

Abadi, D. J., A. Marcus, S. R. Madden, and K. Hollenbach. (2007).
“Scalable semantic web data management using vertical partitioning”.
In: Proceedings of the 33rd international conference on Very large
data bases. 411–422.

Aberger, C. R., A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré.
(2017). “EmptyHeaded: A Relational Engine for Graph Processing”.
TODS. 42(4).

Abo Khamis, M., H. Q. Ngo, and D. Suciu. (2016). “Computing Join
Queries with Functional Dependencies”. In: ACM PODS.

Abul-Basher, Z., N. Yakovets, P. Godfrey, S. Clark, and M. H. Chignell.
(2021). “Answer Graph: Factorization Matters in Large Graphs”. In:
EDBT. Ed. by Y. Velegrakis, D. Zeinalipour-Yazti, P. K. Chrysanthis,
and F. Guerra. OpenProceedings.org.

Afrati, F. N. and J. D. Ullman. (2011). “Optimizing Multiway Joins
in a Map-Reduce Environment”. IEEE Transactions on Knowledge
and Data Engineering. 23(9).

Agrawal, R. (1988). “Alpha: an extension of relational algebra to ex-
press a class of recursive queries”. IEEE Transactions on Software
Engineering. 14(7).

Ahmad, Y., O. Kennedy, C. Koch, and M. Nikolic. (2012). “DBToaster:
Higher-order Delta Processing for Dynamic, Frequently Fresh Views”.
PVLDB. 5(10).

178



References 179

Ammar, K., F. McSherry, S. Salihoglu, and M. Joglekar. (2018). “Dis-
tributed Evaluation of Subgraph Queries Using Worst-case Optimal
Low-memory Dataflows”. PVLDB. 11(6).

Aref, M., B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu, E. Pasalic,
T. L. Veldhuizen, and G. Washburn. (2015). “Design and Implemen-
tation of the LogicBlox System”. In: ACM SIGMOD.

Arroyuelo, D., A. Hogan, G. Navarro, and J. Rojas-Ledesma. (2022).
“Time-and space-efficient regular path queries”. In: ICDE.

Atserias, A., M. Grohe, and D. Marx. (2008). “Size Bounds and Query
Plans for Relational Joins”. In: FOCS.

Bachman, C. W. (2009). “The Origin of the Integrated Data Store
(IDS): The First Direct-Access DBMS”. IEEE Annals of the History
of Computing. 31(4).

Bakibayev, N., T. Kociský, D. Olteanu, and J. Zavodny. (2013). “Ag-
gregation and Ordering in Factorised Databases”. PVLDB. 6(14).

Bakibayev, N., D. Olteanu, and J. Zavodny. (2012). “FDB: A Query
Engine for Factorised Relational Databases”. PVLDB. 5(11).

Beame, P., P. Koutris, and D. Suciu. (2017). “Communication Steps
for Parallel Query Processing”. Journal of the ACM. 64(6). doi:
10.1145/3125644.

Bhattarai, B., H. Liu, and H. H. Huang. (2019). “CECI: Compact
Embedding Cluster Index for Scalable Subgraph Matching”. In:
SIGMOD.

Bi, F., L. Chang, X. Lin, L. Qin, and W. Zhang. (2016). “Efficient Sub-
graph Matching by Postponing Cartesian Products”. In: SIGMOD.

Blakeley, J. A., P.-A. Larson, and F. W. Tompa. (1986). “Efficiently
Updating Materialized Views”. SIGMOD Record. 15(2).

Boncz, P. A., M. Zukowski, and N. Nes. (2005). “MonetDB/X100:
Hyper-Pipelining Query Execution”. In: CIDR.

Bonifati, A., G. Fletcher, H. Voigt, N. Yakovets, and H. V. Jagadish.
(2018). Querying Graphs. Morgan & Claypool Publishers.

Cai, W., M. Balazinska, and D. Suciu. (2019). “Pessimistic Cardinality
Estimation: Tighter Upper Bounds for Intermediate Join Cardinali-
ties”. In: SIGMOD.

https://doi.org/10.1145/3125644


180 References

Chen, J., Y. Huang, M. Wang, S. Salihoglu, and K. Salem. (2022).
“Accurate Summary-Based Cardinality Estimation through the Lens
of Cardinality Estimation Graphs”. PVLDB. 15(8).

Codd, E. F. (1982). “Relational Database: A Practical Foundation for
Productivity”. CACM. 25(2).

Delobel, C. (1978). “Normalization and hierarchical dependencies in
the relational data model”. TODS. 3(3).

Dey, S., V. Cuevas-Vicenttín, S. Köhler, E. Gribkoff, M. Wang, and B.
Ludäscher. (2013). “On implementing provenance-aware regular path
queries with relational query engines”. In: EDBT/ICDT Workshops.

Erling, O. and I. Mikhailov. (2009). “Virtuoso: RDF support in a native
RDBMS”. In: Semantic web information management: a model-based
perspective. Springer. 501–519.

Fagin, R. (1977). “Multivalued dependencies and a new normal form
for relational databases”. TODS. 2(3).

Fan, J., A. G. S. Raj, and J. M. Patel. (2015). “The Case Against
Specialized Graph Analytics Engines.” In: CIDR.

Farias, B., C. Rojas, and D. Vrgoc. (2023). “Evaluating Regular Path
Queries in GQL and SQL/PGQ: How Far Can The Classical Algo-
rithms Take Us?” CoRR. abs/2306.02194.

Feng, X., G. Jin, Z. Chen, C. Liu, and S. Salihoğlu. (2022). “Kùzu
Database Management System Source Code”. url: https://github.
com/kuzudb/kuzu.

Feng, X., G. Jin, Z. Chen, C. Liu, and S. Salihoğlu. (2023). “Kùzu
Graph Database Management System”. In: CIDR.

Francis, N., A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V.
Marsault, S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor.
(2018). “Cypher: An Evolving Query Language for Property Graphs”.
In: ACM SIGMOD.

Freitag, M., M. Bandle, T. Schmidt, A. Kemper, and T. Neumann.
(2020). “Adopting Worst-Case Optimal Joins in Relational Database
Systems”. PVLDB. 13(12).

Graefe, G. (1994). “Volcano - An Extensible and Parallel Query Evalu-
ation System”. TKDE. 6(1).

https://github.com/kuzudb/kuzu
https://github.com/kuzudb/kuzu


References 181

Gupta, P., A. Mhedhbi, and S. Salihoglu. (2021). “Columnar Storage and
List-based Processing for Graph Database Management Systems”.
PVLDB. 14(11).

Han, M., H. Kim, G. Gu, K. Park, and W. Han. (2019). “Efficient
Subgraph Matching: Harmonizing Dynamic Programming, Adaptive
Matching Order, and Failing Set Together”. In: SIGMOD.

Hassan, M. S., T. Kuznetsova, H. C. Jeong, W. G. Aref, and M. Sadoghi.
(2018). “Extending In-Memory Relational Database Engines with
Native Graph Support”. In: EDBT.

Huang, Z. and E. Wu. (2023). “Lightweight Materialization for Fast
Dashboards Over Joins”. SIGMOD. 1(4).

Idreos, S., M. L. Kersten, and S. Manegold. (2007). “Database Cracking”.
In: Conference on Innovative Data Systems Research.

ISO/IEC JTC 1/SC 32. (2024). “SQL/PGQ Standard”. url: https:
//www.iso.org/standard/79473.html.

JCC Consulting, Inc. (2024). “GQL Standard”. url: https://www.
gqlstandards.org/.

Jin, G. and S. Salihoglu. (2022). “Making RDBMSs Efficient on Graph
Workloads Through Predefined Joins”. PVLDB. 15(5).

Jindal, A., P. Rawlani, E. Wu, S. Madden, A. Deshpande, and M.
Stonebraker. (2014). “Vertexica: your relational friend for graph
analytics!” Proceedings of the VLDB Endowment. 7(13): 1669–1672.

Joglekar, M. and C. Ré. (2018). “It’s All a Matter of Degree - Us-
ing Degree Information to Optimize Multiway Joins”. Theory of
Computing Systems. 62(4).

Kalinsky, O., Y. Etsion, and B. Kimelfeld. (2017). “Flexible Caching in
Trie Joins”. In: EDBT. Ed. by V. Markl, S. Orlando, B. Mitschang,
P. Andritsos, K. Sattler, and S. Breß.

Kankanamge, C., S. Sahu, A. Mhedhbi, J. Chen, and S. Salihoglu.
(2017). “Graphflow: An Active Graph Database”. In: SIGMOD.

Kara, A., M. Nikolic, D. Olteanu, and H. Zhang. (2023). “F-IVM:
Analytics over Relational Databases under Updates”. CoRR.
abs/2303.08583.

Khamis, M. A., H. Q. Ngo, C. Ré, and A. Rudra. (2016). “Joins via
Geometric Resolutions: Worst Case and Beyond”. TODS. 41(4).

https://www.iso.org/standard/79473.html
https://www.iso.org/standard/79473.html
https://www.gqlstandards.org/
https://www.gqlstandards.org/


182 References

Koschmieder, A. and U. Leser. (2012). “Regular path queries on large
graphs”. In: SSDBM. Springer.

Koutris, P., S. Salihoglu, and D. Suciu. (2018). “Algorithmic Aspects of
Parallel Data Processing”. Foundations and Trends® in Databases.
8(4).

Lapaugh, A. and C. Papadimitriou. (1984). “The even-path problem
for graphs and digraphs”. Networks. 14.

Leeuwen, W. v., T. Mulder, B. van de Wall, G. Fletcher, and N. Yakovets.
(2022). “AvantGraph Query Processing Engine”. PVLDB. 15(12).

Leis, V., B. Radke, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and
T. Neumann. (2018). “Query Optimization through the Looking
Glass, and What We Found Running the Join Order Benchmark”.
VLDBJ. 27(5).

Lin, C., B. Mandel, Y. Papakonstantinou, and M. Springer. (2016).
“Fast In-Memory SQL Analytics on Typed Graphs”. In: ICDE.

Losemann, K. and W. Martens. (2013). “The complexity of regular
expressions and property paths in SPARQL”. TODS. 38(4).

Malewicz, G., M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N.
Leiser, and G. Czajkowski. (2010). “Pregel: a system for large-
scale graph processing”. In: Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data. 135–146.

Memgraph Ltd. (2023). “MemGraph”. url: https://memgraph.com/.
Mendelzon, A. O. and P. T. Wood. (1995). “Finding regular simple

paths in graph databases”. SIAM J. Comput. 24(6).
Mendelzon, A. O. and P. T. Wood. (1989). “Finding Regular Simple

Paths in Graph Databases”. SIAM J. Comput. 24: 1235–1258.
Mhedhbi, A. (2023). “GraphflowDB: Scalable Query Processing on

Graph-Structured Relations”. PhD thesis. url: http://hdl.handle.
net/10012/19981.

Mhedhbi, A., C. Kankanamge, and S. Salihoglu. (2021). “Optimiz-
ing One-time and Continuous Subgraph Queries using Worst-case
Optimal Joins”. TODS. 46(2).

Mhedhbi, A. and S. Salihoglu. (2019). “Optimizing Subgraph Queries
by Combining Binary and Worst-Case Optimal Joins”. PVLDB.
12(11).

Neo4j, Inc. (2023a). “Neo4j”. url: https://neo4j.com/.

https://memgraph.com/
http://hdl.handle.net/10012/19981
http://hdl.handle.net/10012/19981
https://neo4j.com/


References 183

Neo4j, Inc. (2023b). “Neo4j Record Design”. url: https://neo4j.com/
developer/kb/understanding-data-on-disk/.

Neumann, T. and M. J. Freitag. (2020). “Umbra: A Disk-Based System
with In-Memory Performance”. In: CIDR.

Neumann, T. and G. Weikum. (2010). “The RDF-3X engine for scalable
management of RDF data”. In: VLDBJ.

Ngo, H. Q., D. T. Nguyen, C. Re, and A. Rudra. (2014). “Beyond
Worst-Case Analysis for Joins with Minesweeper”. In: PODS.

Ngo, H. Q., E. Porat, C. Ré, and A. Rudra. (2012). “Worst-case Optimal
Join Algorithms: [Extended Abstract]”. In: PODS.

Ngo, H. Q., C. Ré, and A. Rudra. (2013). “Skew strikes back: new
developments in the theory of join algorithms”. In: SIGMOD Rec.

Nguyen, V.-Q. and K. Kim. (2017). “Efficient regular path query evalu-
ation by splitting with unit-subquery cost matrix”. IEICE Transac-
tions on Information and Systems. 100(10).

Nikolic, M., H. Zhang, A. Kara, and D. Olteanu. (2020). “F-IVM:
Learning over Fast-Evolving Relational Data”. In: ACM SIGMOD.

Olteanu, D. and M. Schleich. (2016). “Factorized Databases”. SIGMOD
Rec. 45(2).

Olteanu, D. and J. Zavodny. (2015). “Size Bounds for Factorised Repre-
sentations of Query Results”. TODS. 40(1).

Peng, Y., Y. Zhang, X. Lin, L. Qin, and W. Zhang. (2020). “Answering
billion-scale label-constrained reachability queries within microsec-
ond”. PVLDB. 13(6).

Raasveldt, M. and H. Mühleisen. (2019a). “DuckDB: An Embeddable
Analytical Database”. In: SIGMOD.

Raasveldt, M. and H. Mühleisen. (2019b). “DuckDB: an Embeddable
Analytical Database”. In: SIGMOD.

Sahu, S., A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu. (2020).
“The Ubiquity of Large Graphs and Surprising Challenges of Graph
Processing: Extended Survey”. 13(12).

Schleich, M. and D. Olteanu. (2020). “LMFAO: An Engine for Batches
of Group-by Aggregates: Layered Multiple Functional Aggregate
Optimization”. 13(12).

https://neo4j.com/developer/kb/understanding-data-on-disk/
https://neo4j.com/developer/kb/understanding-data-on-disk/


184 References

Shun, J. and G. E. Blelloch. (2013). “Ligra: a lightweight graph pro-
cessing framework for shared memory”. In: Proceedings of the 18th
ACM SIGPLAN symposium on Principles and practice of parallel
programming. 135–146.

Silberschatz, A., H. Korth, and S. Sudarshan. (2005). Database Systems
Concepts. 5th ed. McGraw-Hill, Inc.

Smagulova, A. and A. Deutsch. (2021). “Vertex-centric Parallel Compu-
tation of SQL Queries”. In: Proceedings of the 2021 International
Conference on Management of Data. 1664–1677.

Sun, S., X. Sun, Y. Che, Q. Luo, and B. He. (2020). “Rapidmatch: A
holistic approach to subgraph query processing”. Proceedings of the
VLDB Endowment. 14(2): 176–188.

Tatarinov, I., S. D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita,
and C. Zhang. (2002). “Storing and querying ordered XML using
a relational database system”. In: Proceedings of the 2002 ACM
SIGMOD international conference on Management of data. 204–215.

Then, M., M. Kaufmann, F. Chirigati, T.-A. Hoang-Vu, K. Pham, A.
Kemper, T. Neumann, and H. T. Vo. (2014). “The More the Merrier:
Efficient Multi-source Graph Traversal”. PVLDB. 8(4).

Tigergraph. (2023). “TigerGraph”. url: https://www.tigergraph.com/.
Valduriez, P. (1987). “Join Indices”. ACM TODS. 12(2).
Valstar, L. D., G. H. Fletcher, and Y. Yoshida. (2017). “Landmark

Indexing for Evaluation of Label-Constrained Reachability Queries”.
In: SIGMOD.

Veldhuizen, T. L. (2012). “Leapfrog Triejoin: a worst-case optimal join
algorithm”. CoRR. abs/1210.0481.

Veldhuizen, T. L. (2013). “Incremental Maintenance for Leapfrog
Triejoin”. CoRR. abs/1303.5313.

W3C. (2024). “SPARQL Standard”. url: https://www.w3.org/TR/
sparql11-query/.

Wang, Y., A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens.
(2016). “Gunrock: A high-performance graph processing library on
the GPU”. In: Proceedings of the 21st ACM SIGPLAN symposium
on principles and practice of parallel programming. 1–12.

Wang, Y. R., M. Willsey, and D. Suciu. (2023). “Free Join: Unifying
Worst-Case Optimal and Traditional Joins”. In: SIGMOD.

https://www.tigergraph.com/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/


References 185

Wolde, D. ten, T. Singh, G. Szarnyas, and P. Boncz. (2023). “DuckPGQ:
Efficient Property Graph Queries in an analytical RDBMS”. In:
CIDR.

Xirogiannopoulos, K. and A. Deshpande. (2017). “Extracting and ana-
lyzing hidden graphs from relational databases”. In: SIGMOD.

Xirogiannopoulos, K., V. Srinivas, and A. Deshpande. (2017). “Graph-
gen: Adaptive graph processing using relational databases”. In:
GRADES-NDA.

Yakovets, N., P. Godfrey, and J. Gryz. (2013). “Evaluation of SPARQL
Property Paths via Recursive SQL”. In: Alberto Mendelzon Workshop
on Foundations of Data Management.

Yakovets, N., P. Godfrey, and J. Gryz. (2016a). “Query Planning for
Evaluating SPARQL Property Paths”. In: SIGMOD.

Yakovets, N., P. Godfrey, and J. Gryz. (2016b). “Query planning for
evaluating SPARQL property paths”. In: SIGMOD.

Yan, D., Y. Bu, Y. Tian, A. Deshpande, et al. (2017). “Big graph
analytics platforms”. Foundations and Trends® in Databases. 7(1-2):
1–195.

Yannakakis, M. (1981). “Algorithms for Acyclic Database Schemes”. In:
PVLDB.

Yu, J. X. and J. Cheng. (2010). “Graph Reachability Queries: A Survey”.
In: Managing and Mining Graph Data. Springer US.

Zhu, J., N. Potti, S. Saurabh, and J. M. Patel. (2017). “Looking ahead
makes query plans robust: Making the initial case with in-memory
star schema data warehouse workloads”. PVLDB. 10(8).

Zou, L., M. T. Özsu, L. Chen, X. Shen, R. Huang, and D. Zhao. (2014a).
“gStore: a graph-based SPARQL query engine”. The VLDB journal.
23: 565–590.

Zou, L., K. Xu, J. X. Yu, L. Chen, Y. Xiao, and D. Zhao. (2014b).
“Efficient Processing of Label-constraint Reachability Queries in
Large Graphs”. Information Systems. 40.

Zukowski, M., M. van de Wiel, and P. A. Boncz. (2012). “Vectorwise:
A Vectorized Analytical DBMS”. In: ICDE.


	1 Introduction
	1.1 Target Audience
	1.2 Brief Background

	2 Predefined Joins
	2.1 Overview of Joins in SQL and Graph Query Languages
	2.2 Value-based Joins
	2.3 Predefined Joins and Join Indices

	3 Worst-case Optimal Join Algorithms
	3.1 History of the AGM Bound and WCOJ Algorithms
	3.2 AGM Bound and WCO ``Generic Join'' Algorithm
	3.3 Worst-case Optimal Join Only Plans
	3.4 Mixing With Binary Joins
	3.5 FreeJoin: Rule-based Binary Join Plan Modification
	3.6 Other Work and Open Problems

	4 Factorization
	4.1 Overview of Factorization
	4.2 F-Representations Background
	4.3 Approaches to Adopting F-Representations
	4.4 Background on D-Representations
	4.5 Approach to Adopting D-Representations by Graphflow
	4.6 Data-dependent Compression
	4.7 Other Work and Open Problems

	5 Execution of Regular Path Queries
	5.1 Background
	5.2 Automata-based Techniques
	5.3 Relational Algebra-based Techniques
	5.4 WaveGuide: Combining the Two Approaches
	5.5 Other Work

	6 Conclusions
	References

