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ABSTRACT
Many applications detect the emergence or deletion of certain sub-
graphs in their input graphs continuously. In order to evaluate such
continuous subgraph queries, these applications resort to inefficient
or highly specialized solutions because existing graph databases
are passive systems that only support one-time subgraph queries.
We demonstrate Graphflow, a prototype active graph database that
evaluates general one-time and continuous subgraph queries. Graph-
flow supports the property graph data model and the Cypher++
query language, which extends Neo4j’s declarative Cypher lan-
guage with subgraph-condition-action triggers. At the core of
Graphflow’s query processor are two worst-case optimal join al-
gorithms called Generic Join and our new Delta Generic Join algo-
rithm for one-time and continuous subgraph queries, respectively.

1. INTRODUCTION
Evaluating subgraph queries, i.e., finding instances of a given

subgraph in a larger graph, is a fundamental computation performed
by many applications that process graphs. Existing graph databases,
such as Neo4j [5] and OrientDB [7] only support one-time sub-
graph queries that are evaluated on a snapshot of the graph until
completion. However, many applications need to evaluate continu-
ous subgraph queries, which detect the emergence or deletion of a
given subgraph continuously. We give three examples.
Example 1: Twitter’s MagicRecs recommendation application [4]
continuously detects a diamond subgraph, shown in Figure 1a, in
Twitter’s who-follows-whom graph. The diamond subgraph con-
sists of a user a1 who follows two separate users a2 and a3, who
both follow another user a4. Once a diamond subgraph is detected,
MagicRecs recommends user a1 to follow user a4, because two
users that a1 is following are interested in a4.
Example 2: Consider a financial fraud detection application that
has as input a transactions graph. In the graph, individual customers
are vertices and an edge from two customers a1 and a2 indicates
a transfer of money from a1 to a2. The application detects cir-
cular transactions, which may indicate money laundering activity,
and reports them to a fraud detection specialist. This query would
correspond to a continuous cycle query. The triangle query, shown
in Figure 1b, is an example cycle query.
Example 3: Consider a datacenter monitoring application that has
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(a) Diamond subgraph. (b) Triangle subgraph.

Figure 1: Example subgraph queries.
as input a job-host dependency graph, in which jobs and host ma-
chines are vertices. The hosts have a periodically updated status
property that can be either running or down. An edge between
two jobs j1 and j2 represents that j1 depends on j2 and an edge
between a job j1 and a host h1 represents that j1 runs on h1. The
monitoring application continuously detects and alerts the owners
of jobs that are directly or indirectly running on a host that is down.
This query would correspond to a continuous path query.

Building these applications on top of existing passive graph data-
bases would lead to inefficient solutions, such as periodically exe-
cuting a one-time subgraph query and taking the differences in out-
puts. Alternatively, one can model graphs as relational tables, ex-
press subgraph queries as incrementally maintained views and use
triggers of active relational database systems. Relational database
triggers would simplify the development of these applications as
the job of continuously detecting a subgraph is delegated to the
database. However, using a relational data model and query lan-
guage is less natural for graph applications than the graph-specific
data models and languages of graph databases. The lack of con-
tinuous query support by existing graph databases has lead some
applications to build efficient but highly specialized solutions. For
example, MagicRecs is specialized only to detect the diamond sub-
graph. An active graph database that supports general continuous
queries would be of immense use.

We demonstrate Graphflow, an active graph database that sup-
ports subgraph-condition-action triggers for this purpose. In Graph-
flow, applications express the subgraphs they want to detect contin-
uously in a declarative fashion and an action they want to perform
when the subgraph emerges or is deleted from the graph. Graph-
flow’s user-facing components, data model, query language, as well
as the system’s data storage component is graph-specific. Inter-
nally, the system’s query processor is based on a new worst-case
join algorithm called Generic Join [6] and our new incremental
view maintenance algorithm called Delta Generic Join [1].

2. GRAPHFLOW SYSTEM
Figure 2 shows the high-level architecture of Graphflow. Graph-

flow is a single node in-memory system implemented in Java. There
are four main components of the system: (1) an in-memory prop-
erty graph store; (2) the Cypher++ query language, which extends
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Figure 2: Graphflow architecture.
Neo4j’s declarative Cypher language with subgraph-condition-ac-
tion triggers; (3) a One-time Query Processor (OQP); and (4) a Con-
tinuous Query Processor (CQP). We next describe each component.

2.1 In-memory Property Graph Store
Graphflow’s data model is a property graph, i.e., a labeled graph.

Graphs are directed and vertices and edges can have arbitrary key-
value properties on them. The graph is stored in two components.
Structure Store: Stores, for each vertex u, u’s incoming and out-
going adjacency lists stored as arrays. The adjacency lists are stored
in sorted order of the outgoing neighbor IDs, which allows efficient
intersections of two adjacency lists.
Property Store: Stores the key-value properties on vertices and
edges. The keys can be arbitrary strings, and values can be integers,
doubles, booleans, or strings.

2.2 One-time Subgraph Queries
One-time subgraph queries are expressed using original Cypher’s

MATCH clause. The following is the one-time query shown visu-
ally in Figure 1b that finds all of the triangles in the graph that are
formed by transfer type edges:

MATCH a1-[type=‘transfer’]->a2-[type=‘transfer’]->a3, a3-[type=‘transfer’]->a1

The type=‘transfer’ brackets specify a filter on the edges.
Any subgraph query Q on an input graph G can be seen in rela-

tional algebra as a multiway join on replicas of an edges table that
contains all of the edges in G as (source ID, destination ID) tuples.
For example, the triangle query, ignoring filters, is equivalent, in
Datalog syntax, to the query:

triangles (a1, a2, a3) := edges1(a1, a2), edges2(a2, a3), edges3(a3, a1)

We refer to the vertices in Q, e.g., a1, a2, and a3, as variables.
Graphflow evaluates the equivalent multiway join queries using
Generic Join (GJ) plans, which we describe next.

2.2.1 Generic Join [6]
The traditional way of evaluating multiway join queries is using

binary join plans, which join the input tables one at a time. This
corresponds to evaluating subgraph queries by matching Q in G
one edge-at-a-time. Recently, Ngo et. al [6] showed that for many
queries any binary join plan can produce many more intermediate
tuples than the maximum worst-case output of the query. Ngo et.
al. then developed the first worst-case join algorithms, one of which
is GJ. Unlike binary join plans, GJ evaluates queries using a vertex-
at-a-time strategy. Let Q contain m variables, a1, a2, ..., am, and
n edges. GJ consists of two steps:
• Global Variable Ordering: As a first step GJ orders the vari-

ables in Q arbitrarily. Any permutation of the variables can be
picked. We assume for simplicity that a1, ..., am is picked.

(a) GJ Plan. (b) DeltaGJ Plan.

Figure 3: Example GJ and DeltaGJ plans.

• Iterative Prefix Subgraph Extension Step: GJ iteratively eval-
uates a set of prefix subqueries Q1, ..., Qm in G, where Qi is
the subgraph query that includes only the first i variables in Q
and only the edges tables between these variables in Q. At a
high-level, GJ finds subgraphs in G that partially match Q and
extends these subgraphs one vertex at a time. When comput-
ing Qi+1 from Qi, GJ takes each p = (a∗

1, a
∗
2, ..., a

∗
i ) in Qi,

where a∗
i is the ID of a vertex in G. When extending p to tu-

ples in Qi+1, for each edgesj(ak, ai+1) table in Qi+1 where
ak∈{ a1, ..., ai}, GJ takes vertex a∗

k’s outgoing adjacency list.
Similarly for each edgesj(ai+1, ak) table in Qi+1, GJ takes
vertex a∗

k’s incoming adjacency list. GJ then takes the Cartesian
product of p with the intersection of these adjacency lists.

2.2.2 Generic Join Plans
Given a MATCH query Q, Graphflow constructs its logical GJ

plan. The logical plan construction consists of picking an ordering
of the variables in Q using heuristics, organizing the intersection
operations that is consistent with the picked variable ordering, and
deciding the placement of the filter operations in the query. Fig-
ure 3a shows an example plan for the triangle query in Graphflow’s
Plan Viewer (PV) interface. We describe the optimizations we have
implemented in Graphflow for constructing GJ plans.
Sorted Adjacency Lists: As discussed in Section 2.1, Graphflow
stores the adjacency lists in sorted order of neighbor IDs, and uses
the galloping intersection technique [8] for fast intersections.
Variable Ordering Heuristics: We start with the highest degree
variable in Q, breaking the ties arbitrarily. Then, we iteratively
pick the variable that is adjacent to the highest number of already
picked variables, breaking ties by the overall degree or arbitrar-
ily if the degrees are equal. Although GJ’s worst-case optimal-
ity is independent of the variable ordering, the ordering can have
significant performance implications in practice, which we plan to
demonstrate to the conference attendees.
Filter Placement: Any filters on a single vertex or edge in Q, e.g.,
type=’transfer’ on the edge (a2, a3), is executed during the
intersection operation that involves the edge (a2, a3). This is done
by the Intersection-and-Filter operation shown in Fig-
ure 3a. Any filter that accesses two or more properties is executed
as a separate Filter operation that is pushed down to the first
prefix subgraph it can be applied on.

2.3 Continuous Subgraph Queries
Continuous subgraph queries are expressed through subgraph-

condition-action triggers using our CONTINUOUS MATCH clause
extension to Cypher. The following is an example of a trigger that
detects the directed triangles in a transactions graph and calls a
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reportCircularTransfer UDF for each emerged triangle.

CONTINUOUS MATCH a1-[:type=‘transfer’]->a2-[:type=‘transfer’]->a3,
a3-[:type=‘transfer’ ]->a1

ON EMERGENCE ACTION UDF reportCircularTransfer IN udf.jar

The other values for the ON clause are DELETION or ALL,
which detect only the deletions or both the emergence and the dele-
tions of the subgraph. Currently, the other ACTION value is FILE,
which writes the subgraphs to a local file.

Updates, such as insertions or additions of edges, are one-time
queries that arrive at OQP. Upon an update, OQP first temporarily
modifies the in-memory graph store, which implicitly stores three
different versions of the graph upon receiving an update:
• Current: Version of the graph prior to the update.
• Delta: Only the updates.
• New: New version of the graph after applying the updates.
OQP then notifies the CPQ of the updates, which checks for each
registered trigger using DeltaGJ plans, if the subgraph specified in
the trigger emerged or was deleted, and performs the action of the
trigger. Once CQP is done detecting subgraphs, the updates become
permanent in the graph. We next explain CQP’s DeltaGJ plans.

2.3.1 Delta Generic Join Plans
DeltaGJ is a new incremental view maintenance algorithm we

developed that evaluates a set of delta queries dQ1, ..., dQn for
Q using GJ as the input tables change to maintain the result of Q.
We note that, although the idea of delta queries is old and based
on techniques from references [2, 3], our evaluation of dQi using
GJ has performance implications that do not exist for existing IVM
algorithms based on delta queries evaluated with binary join plans.

Upon an update, let c-edges, ∆-edges, and n-edges cor-
respond to the edges in the Current, Delta and New graphs, re-
spectively.1 Figure 5 shows examples of these tables when the input
graph in Figure 4a is updated to Figure 4b. The +/- signs indicate
the inserted and deleted edges, which are also used to differenti-
ate emerged and deleted subgraphs in the output. References [2,
3] have shown that the union of the following n queries gives the
newly emerged tuples (or subgraphs) in Q due to updates.

dQ1 := ∆edges1, c-edges2, c-edges3, ..., c-edgesn
dQ2 := n-edges1,∆edges2, c-edges3, ..., c-edgesn
...

dQn := n-edges1, n-edges2, n-edges3, ...,∆edgesn

DeltaGJ evaluates each of these queries using GJ with the follow-
ing important restriction. Note that in each dQi, there is exactly
one copy of the ∆-edges table. Let ai, aj be the variables in
that ∆-edges table. The variable ordering of GJ when evaluating
dQi has to start with ai, aj or aj , ai. This corresponds to starting
the evaluation from the vertices adjacent on the newly inserted or
deleted edges when we match Q vertex at a time in G. As we show
in our tech-report [1], when variables are ordered in this fashion,
DeltaGJ is worst-case optimal under insertion-only workloads.

Graphflow’s CQP produces the n logical plans for each query
specified in each registered trigger. Figure 3b shows the three log-
ical plans for the three delta queries when evaluating the triangle
query. Notice that in each plan, the variables are ordered differ-
ently. Finally, note that for intersection operations, the plans in-
clude information about from which version of the graph (Cur-
rent, Delta, or New) the adjacency lists should be read from.

1Updates are treated as the deletion of the previous version and the
insertion of the new version of the edge or vertex.

(a) Input graph. (b) Updated input graph.

Figure 4: Example input graph and its updated version.

(a) Current-edges. (b) ∆edges. (c) New-edges.

Figure 5: Current-edges, ∆edges, and New-edges tables.

Name |V| |E| Description
Soc 75K 508K Epinions.com who-trusts-whom graph
LJ 4.8K 69M LiveJournal social graph

TW 42M 1.5B Twitter who-follows-whom graph

Table 1: Graph datasets.

Graph GF-Tr Neo-Tr GF-D Neo-D GF-P Neo-P
Soc(4) 0.2 8 0.8 77 0.4 2.3
LJ(20) 1.6 57 3.4 150 1.8 24

TW(1000) 7 907 18 861 57 663

Table 2: One-time query experiments run-time results.

Graph GF-Tr Neo-Tr GF-D Neo-D GF-P Neo-P
Soc(4) 101K 1.1M 5.5M 14.5M 101K 101K
LJ(20) 2.1M 6.6M 4.5M 18.2M 2.1M 2.1M

TW(1000) 1.2M 3.5M 2.3M 3.5M 1.2M 1.2M

Table 3: One-time query experiments intermediate data results.

3. PERFORMANCE
We compared the performance of Graphflow against Neo4j on

one-time queries and PostgreSQL delta query plans that use binary
joins on continuous queries. Unlike Graphflow, both systems use
edge-at-a-time strategies for evaluating subgraph queries. Table 1
shows the three real-world input graphs we used. We used a Linux
machine with 256GB RAM and Intel E5-2670 processor. We note
that our experiments cover a limited set of input graphs and queries.
We leave an extensive performance study to future work.

For one-time queries, we used the triangle, diamond, and a sim-
ple path query outputting the two degree neighbors of each ver-
tex. We added an integer group property, starting from 1, on the
edges to make the queries faster. The maximum group value varied
across experiments. We searched for only the subgraphs in which
each edge had a group of 1. We ensured that Neo4j keeps the
entire graph in its in-memory cache. For each query, we measured
the query runtime and the intermediate number of subgraphs each
system generates. Table 2 shows the results. In the table the Tr,
D, and P suffixes indicate the triangle, diamond, and path queries,
respectively. The numbers in parentheses indicate the number of
groups we used in the input graph. As seen in the table, Graph-
flow generates up to 10.9x less intermediate data than Neo4j and is
between 5.8x and 129x faster on our queries. We note that Graph-
flow generates less intermediate data than Neo4j as a consequence
of its vertex-at-a-time strategy instead of Neo4j’s edge-at-a-time
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Exp. GF-R GF-T GF-I PSQL-R PSQL-T PSQL-I
Soc-Tr(4) 0.008s 26K 2.6K 1.2s 186 37.5K
Soc-D(4) 0.13s 183K 42K 3.3s 7K 245.1K
LJ-Tr(4) 0.03s 21K 12.5K 15s 42 96.5K
LJ-D(4) 4.5s 125K 85.4K 134s 447 723.8K

Table 4: Continuous query experiments.
strategy. This accounts for part of our runtime efficiency. However,
our runtime efficiency is also due to two other important factors: (1)
Graphflow is a prototype system, which is inherently more efficient
as it supports fewer features; and (2) instead of Neo4j’s linked lists
storing Java objects, our graph store is backed by Java primitive
type arrays, which are faster in lookups.

For continuous queries, we used the triangle and diamond queries.
In PostgreSQL, we stored a c-edges, a ∆-edges, and an n-ed-
ges table. We put indices on both the srcID and dstID columns
of each table. We used Linux’s tmpfs file system to store Post-
greSQL’s data in memory. We loaded a random 20% of the edges
in the graph to each system, using c-edges and n-edges ta-
bles in PostgresSQL. Then we issued a batch of updates containing
B edges, 75% of which are random insertions from the remaining
80% of the original graph edges, and 25% of which are random
deletions. In PostgreSQL we inserted these B edges to ∆-edges
and applied them to n-edges tables (actually deleting the deleted
edges). We let Graphflow’s CQP to process the batch using Delt-
aGJ plans. In PostgresQL, we used manual stored procedures to
evaluate the same delta queries, which in PostgreSQL are executed
with binary join plans. We issued batches until 2M edges (or all
remaining 80% edges) are inserted and measured the runtime and
throughput, i.e., detected subgraphs per second, of each system and
the intermediate data generated by each system. The runtimes omit
data indexing time, which was more efficient in Graphflow. The
results are shown in Table 4. We omit experiments with Twitter be-
cause PostgreSQL was taking a prohibitively long time to load and
complete batches. The “R”,“T”, and “I” suffixes indicate the aver-
age runtime, throughput, and intermediate data per batch, respec-
tively. Batch sizes were 10K for Soc and 100K for LJ. Graphflow
generates up to 14.4x less intermediate data than PostgreSQL’s bi-
nary join plans and is between 25x to 500x faster on our queries.
We note again that while our intermediate data generation is due
to differences between DeltaGJ and binary join plans, our runtime
efficiency is also due to other factors we outlined above.

4. DEMONSTRATION SCENARIOS
Our demonstration illustrates three aspects of Graphflow: (1) an

overview of the system; (2) the ease of development of a Graphflow
application; and (3) Graphflow’s GJ and DeltaGJ plans.

4.1 Graphflow Overview
Our first scenario aims to give an overview of an active graph

database and the continuous graph applications that can be built
on it. Prior to the conference, we will prepare a graph database
that contains as nodes, the authors of SIGMOD 2017 papers, and
as edges, their Twitter followers. Nodes will have optional email
addresses as a property. We will build two applications:
• MagicRecs: Continuously detects diamonds and sends follower

recommendations as emails to the attendees who visit our demo.
• SIGMOD Cliques: Continuously finds a clique of 4 users and

shows the most recent SIGMOD cliques on our monitor.
We will grow our preloaded database continuously by adding

each attendee that visits our demo. We will insert the attendee’s
Twitter username and email address to a browser UI, which will
add the attendee and her followers to Graphflow using Twitter’s
API. Upon this insertion, our application will send her an email
based on the diamonds she participates in. If she is part of a 4-

clique, our monitor will refresh to show her clique as the most re-
cent SIGMOD clique. We will determine and ask her to follow
certain users that lead to new diamonds that she is part of. She will
get new recommendations soon after she follows those users.

Throughout our interaction, we will give the attendee an overview
of our graph store, Cypher++ language, and query processors.

4.2 Graphflow Application Development
Our next scenario demonstrates the ease of application develop-

ment with Graphflow. The attendee will develop from scratch the
financial fraud detection application from Section 1. A typical de-
velopment cycle will be as follows:
1. Using Graphflow’s console, the attendee will create a transac-

tions graph that contains customer nodes and transaction edges.
2. The attendee will write a UDF in Java that processes cycles.

In the UDF, the attendee can choose among possible actions to
take, including printing the cycle on the screen, sending emails
or text messages to someone, or issuing further queries to Graph-
flow to delete a transaction in the cycle.

3. The attendee will finally write the Cypher++ trigger to detect
the emergence of a cycle of a small size (e.g., 3 or 4) and as
action call the UDF she implemented in the previous step.

Once the application is built, we will test the application as follows.
Prior to the conference, we will build a UI that contains a synthetic
transactions graph. Initially all of the edges will be colored gray
indicating the edge has not been inserted to the database. When the
attendee clicks on an edge, the edge will be added to the database
and turn green. Once the attendee forms a cycle, she will observe
that the action she implemented is taken.

4.3 GJ and DeltaGJ Plans
The goal of this scenario is to demonstrate Graphflow’s GJ and

DeltaGJ query plans. The attendee will write a one-time or con-
tinuous subgraph query and see Graphflow’s default GJ or DeltaGJ
plan for the query visually on PV (as in Figure 3). We will explain
the different operators, graph versions, and variable orderings in the
plan. To demonstrate the effects of variable orderings, the attendee
will type a new ordering on PV that will override Graphflow’s de-
fault plan and generate a new plan. The attendee will execute differ-
ent plans on one of the real-world graphs from Table 1 by clicking
a button on PV. For continuous queries, edges of the graph will be
streamed at the background using a script we have prepared. The
attendee will observe the performances of different plans through
the statistics on PV about run-time, intermediate prefixes generated,
and throughput. By executing a fixed plan on different scale inputs,
the attendee will also test Graphflow’s scalability.
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