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Optimizing One-time and Continuous Subgraph Queries

using Worst-case Optimal Joins
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We study the problem of optimizing one-time and continuous subgraph queries using the new worst-case
optimal join plans. Worst-case optimal plans evaluate queries by matching one query vertex at a time using
multiway intersections. The core problem in optimizing worst-case optimal plans is to pick an ordering of
the query vertices to match. We make two main contributions:

1. A cost-based dynamic programming optimizer for one-time queries that (i) picks efficient query vertex
orderings for worst-case optimal plans and (ii) generates hybrid plans that mix traditional binary
joins with worst-case optimal style multiway intersections. In addition to our optimizer, we describe
an adaptive technique that changes the query vertex orderings of the worst-case optimal subplans
during query execution for more efficient query evaluation. The plan space of our one-time optimizer
contains plans that are not in the plan spaces based on tree decompositions from prior work.

2. A cost-based greedy optimizer for continuous queries that builds on the delta subgraph query frame-
work. Given a set of continuous queries, our optimizer decomposes these queries into multiple delta
subgraph queries, picks a plan for each delta query, and generates a single combined plan that evalu-
ates all of the queries. Our combined plans share computations across operators of the plans for the
delta queries if the operators perform the same intersections. To increase the amount of computation
shared, we describe an additional optimization that shares partial intersections across operators.

Our optimizers use a new cost metric for worst-case optimal plans called intersection-cost. When generating
hybrid plans, our dynamic programming optimizer for one-time queries combines intersection-cost with the
cost of binary joins. We demonstrate the effectiveness of our plans, adaptive technique, and partial intersec-
tion sharing optimization through extensive experiments. Our optimizers are integrated into GraphflowDB.
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1 INTRODUCTION

Subgraph queries, which find instances of a query subgraph Q (VQ ,EQ ) in an input graphG (V ,E),
are a fundamental class of queries supported by graph databases. We refer to finding subgraphs in a
static graph as one-time subgraph queries and monitoring subgraphs in a dynamic graph as contin-

uous subgraph queries. Subgraph queries appear in many applications where graph patterns reveal
valuable information [61]. For example, Twitter searches for diamonds in their follower network
for recommendations [23], cliquelike structures in social networks indicate communities [48], and
cyclic patterns in transaction networks indicate fraudulent activities [12, 44].

As observed in prior work [2, 6], a subgraph queryQ is equivalent to a multiway self-join query
that contains one E(ai ,aj ) (for Edge) relation for each ai→aj ∈ EQ . The top box in Figure 1(a)
shows an example query, which we refer to as diamond-X. This query can be represented as:

QDX = E1 �� E2 �� E3 �� E4 �� E5 where
E1 (a1,a2), E2 (a1,a3), E3 (a2,a3), E4 (a2,a4), and E5 (a3,a4) are copies of E(ai ,aj ).

We study evaluating a general class of subgraph queries where VQ and EQ can have labels. For
labelled queries, the edge table corresponding to the query edge ai→aj contains only the edges
in G that are consistent with the labels on ai , aj , and ai→aj . Subgraph queries are evaluated with
two main approaches:

• Query-edge(s)-at-a-time approach executes a sequence of binary joins to evaluateQ . Each bi-
nary join effectively matches a larger subset of the query edges ofQ inG untilQ is matched.

• Query-vertex-at-a-time approach picks a query vertex ordering σ of VQ and matches Q one
query vertex at a time according to σ . Query vertex matching uses a multiway join operator
that performs multiway intersections. This is the computation performed by the recent
worst-case optimal join algorithms [49, 50, 66]. In graph terms, this computation intersects
one or more adjacency lists of vertices to extend partial matches by one query vertex.

We refer to plans with only binary joins as BJ plans, with only intersections as WCO (for worst-
case optimal) plans, and with both operations as hybrid plans. Figure 1(a), (b), and (c) show an
example of each plan for the diamond-X query.

Recent theoretical results [8, 50] showed that BJ plans can be suboptimal on cyclic queries.
Specifically, the size of the intermediate results of BJ plans, on cyclic queries, can be asymptotically
larger than the maximum possible final output size of the query. This maximum output size is now
known as a query’s AGM bound. Given the sizes of a set of relations |R1 |, . . . , |Rn | and a join query
Q on these relations, the AGM bound is the maximum output size ofQ under all possible database
instances with these relation sizes. These results also showed that WCO plans correct for this sub-
optimality. However, this theory has two shortcomings. First, the theory does not give advice as to
how to pick a good query vertex ordering (QVO) for WCO plans. Specifically, the theory demon-
strates any query vertex ordering achieves worst-case optimality. In practice however, different
query vertex orderings have very different performances. Second, the theory does not capture
plans with binary joins, which have been shown to be efficient on many queries by decades-long
research in databases as well as several recent work in the context of subgraph queries [2, 38].

In this work, we study how to generate efficient plans that use WCO join-style multiway inter-
sections and use them to evaluate one-time and continuous subgraph queries in graph database
management systems. We describe two cost-based optimizers that we developed for GraphflowDB:
(i) a dynamic programming optimizer that generates efficient plans for one-time subgraph queries
using a mix of worst-case optimal join-style multiway intersections and binary joins and (ii) a
greedy optimizer that generates WCO plans for continuous queries that share computation across
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Fig. 1. Example plans. The subgraph on the top box of each plan is the actual query.

Table 1. Abbreviations Used Throughout the Paper

Abbrv. Explanation Abbrv. Explanation

BJ Binary Join E/I Extend/Intersect
CP Combined Plan GHD Generalized Hypertree Decompositions
DSQ Delta Subgraph Query QVO Query Vertex Ordering
EH EmptyHeaded WCO Worst-case Optimal

queries. Our cost metric for WCO plans captures the various runtime effects of query vertex or-
derings we have identified. Our cost-based optimizers’ plans are significantly more efficient than
the plans generated by prior solutions using WCO plans that are either based on heuristics or
have limited plan spaces. The optimizers of both native graph databases, such as Neo4j [43], as
well as those that are developed on top of RDBMSs, such as SAP’s graph database [60], are often
cost-based. As such, our work gives insights into how to integrate the new worst-case optimal join
algorithms into cost-based optimizers of existing systems.

In the remainder of this section, we give an overview of existing solutions for one-time and con-
tinuous subgraph queries, our approach, and contributions. Table 1 summarizes the abbreviations
used throughout the article.

1.1 Single One-time Subgraph Query Optimization

1.1.1 Existing Approaches. Perhaps the most common approach adopted by graph databases
(e.g., Neo4j), RDBMSs, and RDF systems [47, 70] is to evaluate subgraph queries with BJ plans. As
observed in prior work [49], BJ plans are inefficient in cliquelike queries, such as cliques. Several
prior solutions, such as BiGJoin [6], and the LogicBlox system have studied evaluating queries
with only WCO plans, which, as we demonstrate in this article, are not efficient for large cycle
queries. In addition, these solutions either use simple heuristics to select query vertex orderings
or arbitrarily select them.
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Table 2. Comparisons against Solutions for One-time Queries Using WCO Joins

QVO Binary Joins?

BiGJoin Arbitrarily No
LogicBlox Heuristics or Cost-based1 No
EmptyHeaded Arbitrarily Cost-based: depends on Q
CTJ Heuristic + Cost-Based (uses caching) No
GraphflowDB Cost-based & Adaptive Cost-based: depends on Q and G

The EmptyHeaded system [2], which is the closest to our work, is the only system we are aware
of that mixes worst-case optimal joins with binary joins. EmptyHeaded (EH) plans are general-

ized hypertree decompositions (GHDs) of the input query Q . A GHD is effectively a join tree
T of Q , where each node of T contains a sub-query of Q . EmptyHeaded evaluates each sub-query
using a WCO plan, i.e., using only multiway intersections, and then uses a sequence of binary
joins to join the results of these sub-queries. As a cost metric, EmptyHeaded uses the generalized

hypertree widths of GHDs and picks a minimum-width GHD. This approach has three shortcom-
ings: (i) If the GHD contains a single sub-query, then EmptyHeaded arbitrarily picks the query
vertex ordering for that query; otherwise, it picks the orderings for the sub-queries using a simple
heuristic; (ii) the width cost metric depends only the input query Q , so when running Q on dif-
ferent graphs, EmptyHeaded always picks the same plan; and (iii) the GHD plan space does not
allow plans that can perform multiway intersections after binary joins. As we demonstrate, there
are efficient plans for some queries that seamlessly mix binary joins and intersections and do not
correspond to any GHD-based plan of EmptyHeaded.

Cache Trie Join (CTJ) [28] is another system using a WCO join algorithm. An important ad-
vantage of WCO join algorithms is their small memory footprints. For example, when executed
in a purely pipelined fashion, such algorithms do not require memory to keep large intermediate
results. CTJ observes that by keeping a cache of certain intermediate results and reusing these
results, the performance of WCO join algorithms can be improved.

1.1.2 Our Contributions. Table 2 summarizes how our approach compares against prior so-
lutions. Our first main contribution is a dynamic programming optimizer that generates plans
with both binary joins and an Extend/Intersect operator that extends partial matches with one
query vertex. LetQ containm query vertices. Our optimizer enumerates plans for evaluating each
k-vertex sub-query Qk of Q , for k=2, . . . ,m, with two alternatives: (i) a binary join of two smaller
sub-queries Qc1 and Qc2 or (ii) by extending a sub-query Qk-1 by one query vertex with an inter-
section. This generates all possible WCO plans for the query as well as a large space of hybrid
plans that are not in EmptyHeaded’s plan space. Figure 2 shows an example hybrid plan for the
6-cycle query that is not in EmptyHeaded’s plan space.

For ranking WCO plans, our optimizer uses a new cost metric called intersection cost (i-cost).
I-cost represents the amount of intersection work that a plan P will do using information about
the sizes of the adjacency lists that will be intersected throughout P . For ranking hybrid plans,
we combine i-cost with the cost of binary joins. Our cost metrics account for the properties of
the input graph, such as the distributions of the forward and backward adjacency lists sizes and
the number of matches of different subgraphs that will be computed as part of a plan. Unlike
EmptyHeaded, this allows our optimizer to pick different plans for the same query on different
input graphs. Our optimizer uses a subgraph catalogue to estimate i-cost, the cost of binary joins,
and the number of partial matches a plan will generate. The catalogue contains information about:
(i) the adjacency list size distributions of input graphs; and (ii) selectivity of different intersections
on small subgraphs.
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Fig. 2. Example plan not in EmptyHeaded’s GHD-based plan space. Top box is the actual query.

Our second contribution is an adaptive technique for picking the query vertex orderings of WCO
parts of plans during query execution. Consider a WCO part of a plan that extends matches of
sub-query Qi into a larger sub-query Qk . Suppose there are r possible query vertex orderings,
σ1, . . . ,σr , to perform these extensions. Our optimizer tries to pick the ordering σ ∗ with the lowest
cumulative i-cost when extending all partial matches of Qi in G. However, for any specific match
t of Qi , there may be another σj that is more efficient than σ ∗. Our adaptive executor re-evaluates
the cost of each σj for t based on the actual sizes of the adjacency lists of the vertices in t , and
picks a new ordering.

We incorporate our optimizer into GraphflowDB and evaluate it across a large class of subgraph
queries and input graphs. We show that our optimizer is able to pick close to optimal plans across
a large suite of queries and our plans, including some plans that are not in EmptyHeaded’s plan
space, are up to 68× more efficient than EmptyHeaded’s plans. We show that adaptively pick-
ing query vertex orderings improves the runtime of some plans by up to 4.3×, in some queries
improving the runtime of every plan and makes our optimizer more robust against picking bad
orderings.

1.2 Multiple Continuous Subgraph Queries Optimization

Continuous subgraph query evaluation is the problem of detecting the emergence and deletions
of a set of (often a small number of) queries that are registered in a system, as the system gets
updates to the input graph it manages. Specifically, the problem is to produce a set of newly added
and deleted matches of a query after each update to the graph, as a set of tuples with + and - tags,
respectively. In this work, we consider the updates to be only edge insertions and deletions. Tradi-
tionally, this functionality is the core of triggers in active database management systems [29, 68].

1.2.1 Existing Approaches. Prior work on continuous subgraph queries has two main short-
comings: (i) They are either designed for a single query instead of multiple queries [6, 14, 30], so
do not benefit from optimization possibilities across queries and/or (ii) require large auxiliary data
structures [14, 30, 34, 55, 58]. We build on the Delta Generic Join incremental view maintenance

(IVM) algorithm from Reference [6]. Delta Generic Join is an IVM algorithm based on an algebraic
IVM technique called delta join query decompositions [11] of queries. Using graph terminology, we
refer to these queries as delta subgraph queries. Figure 3 shows the five delta subgraph queries of
the diamond-X query. Suppose a set Eδ of updates arrive atG. Let Eo be the old edges ofG and En

the new edges ofG after the update, i.e., En = Eo ∪ Eδ . Each query edge of a delta subgraph query
is labelled with δ , o, or n, indicating, upon an update toG, whether the edge should match an edge
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Fig. 3. Example delta subgraph queries for the diamond-X continuous subgraph query.

Table 3. Comparisons against Solutions for Continuous Queries Using WCO Joins

QVO
Multi-Query

Optimization?

Auxiliary Data

Structures?

DeltaBiGJoin [6] Arbitrary No No
GraphflowDBold [29] Heuristics No No
TurboFlux [30] Cost-based No Yes
GraphflowDB Cost-based Yes No

in Eδ , Eo , or En , respectively. Delta Generic Join evaluates each delta subgraph query using a WCO
plan. References [6] and [29] demonstrated the runtime, memory, and theoretical benefits of this
approach. For example, one advantage of the delta subgraph query framework is that it does not
require auxiliary data structures and that under insertion-only workloads, the cumulative compu-
tation performed by Delta Generic Join is worst-case optimal [6]. However, these works focused
on the case of evaluating a single query and assumed the query vertex orderings were given or
picked them using simple heuristics.

1.2.2 Our Contributions. Table 3 summarizes how our approach compares against prior solu-
tions. Our contribution is a greedy optimizer for multiple continuous subgraph queries that builds
upon the delta subgraph query framework. Our optimizer takes as input the delta subgraph query
decompositions of a set of queries Q̄ and outputs a low i-cost combined plan that cumulatively
evaluates all of the delta subgraph queries. We first prove that unlike one-time subgraph queries,
the optimization problem of finding the lowest i-cost combined plan is NP-complete. As a result,
instead of a dynamic programming optimizer, we describe a greedy optimization algorithm that
picks a plan, i.e., a query vertex ordering for each delta subgraph query, and generates a com-
bined plan that shares common operators across the plans of delta subgraph queries. The sharing
opportunity arises when delta subgraph queries share isomorphic components. An important ob-
servation we make is that in absence of perfect symmetry between delta subgraph queries, it is
not possible to share computations at the last operators of each plan, that is often where the ma-
jority of work is done in the plans. We describe an optimization we call partial intersection sharing

that allows partial computation sharing in the operators to increase the amount of computation
sharing across plans. We show that on small sets of queries, our optimizer is able to find close
to optimal plans in terms of wall-clock time in our experimental analysis. On larger queries, we
demonstrate that our optimizer can generate combined plans that are up to 3.51× more efficient
than optimizing and evaluating each delta subgraph query separately. For completeness, for single
continuous subgraph queries, we also provide comparisons against the most efficient continuous
subgraph query algorithm we are aware of called TurboFlux [30].

1.3 Outline

Section 2 provides necessary background. Section 3 and 4.2 describe, respectively, our one-time and
continuous subgraph query optimizers. Section 5 provides several details on the implementation
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of our optimizers and GraphflowDB. Section 6 provides extensive experiments studying the per-
formances of our one-time and continuous plans. Finally, Sections 7 and 8 cover related work and
conclude, respectively.

2 PRELIMINARIES

We assume a subgraph queryQ (VQ ,EQ ) is directed, connected, and hasm query verticesa1, . . . ,am

and n query edges. To indicate the directions of query edges clearly, we use the ai→aj and ai←aj

notation. We assume that all of the vertices and edges inQ have labels on them, which we indicate
with l (ai ), and l (ai→aj ), respectively. Similar notations are used for the directed edges in the
input graph G (V ,E). Unlabelled queries can be thought of as labelled queries on a version of G
with a single edge and single vertex label. The outgoing and incoming neighbours of each v ∈ V
are indexed in forward and backward adjacency lists and sorted by their IDs, which allows for fast
intersections.

2.1 Generic Join: A WCO Join Algorithm

Generic Join [49] is a WCO join algorithm that evaluates queries one attribute at a time. We de-
scribe the algorithm in graph terms; Reference [49] gives an equivalent relational description. In
graph terms, the algorithm evaluates queries one query vertex at a time with two main steps:

• Query Vertex Ordering (QVO): Generic Join first picks an order σ of query vertices to
match. For simplicity, we assume σ = a1 . . . am . The projection of a query Q (V ,E) on a set
of vertices X ⊆ V , denoted by ΠXQ , is a query Qx (X ,EX ) such that for any pair ai , aj ∈ X ,
ai→aj ∈ Ex if only if ai→aj ∈ E. We assume the projection of Q onto any prefix of k query
vertices in σ for k = 1, . . . ,m to be connected.2

• Iterative Partial Match Extensions: Generic Join iteratively computes matches for
Q1, . . . ,Qm , where Qk = Π {a1, ...,ak }Q is a subquery that consists of Q’s projection on the
first k query vertices in σ : a1 . . . ak . Each iteration k produces a set of k-matches for Qk ,
where a k-match is a tuple t of size k and t[i], the ith element in t , is the vertex inG match-
ing ai in Qk . The first iteration is produced by matching all vertices in G to a1. To compute
Qk for k > 1, for each (k-1)-match t of Qk-1, Generic Join performs the following computa-
tion. First, the algorithm takes the forward adjacency list of t[i] for each ai→ak ∈ EQ and
the backward adjacency list of t[i] for each ai←ak∈ EQ , where i ≤ k-1 and intersects these
lists. The result of the intersection is the set S={s1, . . . , s� } of possible vertex matches for ak .
Then, for each si ∈ S , one output k-match (t[1], . . . , t[k − 1], si ) is produced by appending
si to t . If S = {}, then no output tuples are produced.
Consider for example, the diamond-X query QDX (VDX ,EDX ) from Section 1 with a QVO
σ = a1a2a3a4. The fourth iteration takes as input the set of 3-matches forQ3=Π {a1,a2,a3 }QDX

and produces a set of 4-matches for QDX . Let t = (v1,v4,v5) be a 3-match, where v1, v4,
and v5 match a1, a2, and a3, respectively. To compute the set S , i.e., vertex matches for
a4, Generic Join intersects the forward adjacency lists of v4 (matching a2) and v5 (match-
ing a3). Note that Generic Join uses the forward adjacency lists, because a2 and a3 are al-
ready matched in the pattern and both a2 and a3 have forward edges to a4 in the query,
i.e., a2→a4 ∈ EDX and a3→a4 ∈ EDX . Assume S = {v3,v11} then the set of output tuples is
{(v1,v4,v5,v3), (v1,v4,v5,v11)}.

2Otherwise, Generic Join would need to compute expensive Cartesian products to produce intermediate results that match

these prefix k query vertices.
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2.2 Delta Generic Join: A WCO IVM Algorithm

Recall from Section 1.2 that evaluating a continuous subgraph query Q is the problem of producing
a set of newly added and deleted matches of Q after each batch of updates to a dynamic graph.
We consider only edge insertions and deletions as updates and assume that the newly added and
deleted tuples should be produced as a set of tuples with + and - tags, respectively, after each
batch. In graph terms, a continuous subgraph query Q is equivalent to the IVM of the join query
that is equivalent to Q , that produces the changes in the output of Q after each update. We adopt
and optimize the Delta Generic Join framework [6] as an IVM algorithm to evaluate continuous
subgraph queries. Let Eδ be a set of updates, Eo be the old edges in G before Eδ , and En the new
edges, i.e., En = Eo ∪ Eδ . We assume added and deleted edges in Eδ are identified by +/− labels,

respectively. Emerged and deleted outputs are identified similarly. We will use ai
δ /o/n−−−−→ aj notation

to refer to the query edges that should match edges in Eδ , Eo , or En . Delta Generic Join uses an
algebraic IVM technique called delta join query decomposition of queries [11], which decomposes
Q , of n query edges, into n delta subgraph queries (DSQ)s, and upon an update evaluates each
delta subgraph query and unions their results to find the emerged and deleted instances of Q :

DSQ1 = a11
δ−→ a12,a21

o−→ a22,a31
o−→ a32, . . . ,an1

o−→ an2

DSQ2 = a11
n−→ a12,a21

δ−→ a22,a31
o−→ a32, . . . ,an1

o−→ an2

...

DSQn = a11
n−→ a12,a21

n−→ a22,a31
n−→ a32, . . . ,an1

δ−→ an2

For example, the delta subgraph queries of the asymmetric triangle query are as follows:

DSQ1 = a1
δ−→ a2,a2

o−→ a3,a1
o−→ a3

DSQ2 = a1
n−→ a2,a2

δ−→ a3,a1
o−→ a3

DSQ3 = a1
n−→ a2,a2

n−→ a3,a1
δ−→ a3

We represent delta subgraph queries visually as labelled graphs as shown in Figure 3. We assume
the updates that arrive, i.e., |Eδ |, are small, say, several edges, compared to existing edges in G.
Delta Generic Join runs each delta subgraph query using Generic Join with a QVO that starts with
the two query vertices in a δ query edge. This ensures running Generic Join leads to a very small
number of 2-matches.

3 OPTIMIZING ONE-TIME QUERIES

In this section, we describe our end-to-end solution to optimizing one-time queries using a mix of
WCO join-style intersections and binary joins. The outline of the section is as follows:

• Section 3.1 describes how we optimize the QVOs of WCO plans, which constitute a subset
of our plan space. We describe our WCO plan space, three performance effects of different
QVOs that we identify and demonstrate through experiments, and the i-cost metric we
designed to capture these effects.

• Section 3.2 describes our full plan space, which includes plans with binary joins, and our
dynamic programming optimizer that generates plans that can seemlessly mix WCO join-
style multiway intersections with binary joins.

• Section 3.4 describes our cost and cardinality estimation technique, which uses a subgraph
catalogue that contains statistics about small size subgraphs.
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• Section 3.5 describes our adaptive technique that changes the QVOs of WCO sub-plans as
actual adjacency list sizes are observed during query execution.

3.1 Optimizing WCO Plans

This section demonstrates our WCO plans, the effects of different query vertex orderings we have
identified, and our i-cost metric for WCO plans. Throughout this section, we present several experi-
ments on unlabelled queries for demonstration purposes. The datasets we use in these experiments
are described in Table 9.

3.1.1 WCO Plans and E/I Operator. Each query vertex ordering σ of Q is effectively a different
WCO plan for Q . Figure 1(b) shows an example σ , which we represent as a chain of m–1 nodes,
where the (k–1)th node from the bottom contains a sub-query Qk , which is the projection of Q
onto the first k query vertices of σ . We use two pipelined operators to evaluate WCO plans:
Scan: Leaf nodes of plans, which match a single query edge, are evaluated with a Scan operator.
The operator scans the forward adjacency lists in G that match the labels on the query edge, and
its source and destination query vertices, and outputs each matched edge u→v ∈ E as a 2-match.
Extend/Intersect (E/I): Internal nodes labelledQk (Vk , Ek ) that have a child labelledQk–1 (Vk–1,
Ek–1) are evaluated with an E/I operator. The E/I operator takes as input (k–1)-matches and ex-
tends each tuple t to a set of k-matches. The operator is configured with one or more adjacency

list descriptors (descriptors for short) and a label lk for the destination vertex, which indicate the
adjacency lists that the operator needs to use when performing intersections when extending each
input k-1-match t it receives. Each descriptor is an (i, dir, le ) triple, where i is the index of a vertex
in t , dir is forward or backward, and le is the label on the query edge the descriptor represents.
For each (k–1)-match t , the operator first computes the extension set S = {s1, . . . , s� } of t by inter-
secting the adjacency lists described by its descriptors, ensuring they match the specified edge and
destination vertex labels, and then produces one k-match, (t[1], . . . , t[k − 1], si ), for each si ∈ S .
When there is a single descriptor, S is the vertices in the adjacency list described by the descriptor.
Otherwise, we intersect the adjacency lists using iterative 2-way in tandem intersections.

When extending a single (k–1)-match t to �many k-matches, all of these k matches are identical
on the first k-1 query vertices of σ (which is equal to t ). Therefore later E/I operators, which might
use the adjacency lists of these k-1 vertices may perform repeated intersections. In such cases, our
E/I operators cache and reuse all or a subset of the intersections they make for the last tuple they
extend. We next explain this optimization through two examples. Consider the diamond-X query
QDX from Section 1 with a QVO σ = a2a3a1a4. Let o3 and o4 be the E/I operators extending the
2-matches to 3-matches and 3-matches to 4-matches, respectively. Let t = (v1,v2) be a 2-match,
wherev1 andv2 matcha2 anda3, respectively.o3, when taking t as input, computes an extension set
S = {s1, . . . , s� } and passes each output 3-match (v1,v2, si ) to o4 consecutively. Therefore, o4 would
intersect the forward adjacency lists ofv1 andv2 � consecutive times. Instead, o4 can compute this
intersection for (v1,v2, s1) once and reuse it for the following �−1 tuples it receives. Similarly,
consider a 4-clique query, which is the same as QDX with an added edge a1→a4. o4, given the
same input, would now intersect the forward adjacency lists of v1, v2, and si . In this example, the
intersections that o4 needs to perform to extend each of the � tuples is different. However, if we
order our 2-way in tandem intersections to start with the forward adjacency lists of v1 and v2,
they would all perform this partial intersection, which we can cache and reuse in each of the �
extensions, i.e., in each extension, we intersect this partial intersection’s result with the forward
adjacency list of si .

Caching and reusing the last full or partial intersection overall improves the performance of
WCO plans as it reduces the amount of repetitive work at the E/I operators. This optimization also
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Table 4. Experiment on Intersection Cache Utility for
Diamond-X

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

Cache On 2.4 2.9 3.2 3.3 3.3 3.4 4.4 6.5
Cache Off 3.8 3.2 3.2 3.3 3.3 3.4 8.5 10.7

Table 5. Runtime (seconds), Intermediate Partial Matches (part. m.), and
i-cost of Different QVOs for the Asymmetric Triangle Query

BerkStan Live Journal
QVO time part. m. i-cost time part. m. i-cost
a1a2a3 2.6 8M 490M 64.4 69M 13.1B
a2a3a1 15.2 8M 55,8B 75.2 69M 15.9B
a1a3a2 31.6 8M 55,9B 79.1 69M 17.3B

has a very small memory footprint, since we only store at most one full or one partial intersection
at each E/I operator at any point in time during query execution. As a demonstrative example,
Table 4 shows the runtime of all WCO plans for the diamond-X query with caching enabled and
disabled on the Amazon graph. The orderings in the table are omitted. 4 of the 8 plans utilize the
intersection cache and improve their runtime. One of the plans improves by 1.9x.

3.1.2 Effects of QVOs. The work done by a WCO plan is commensurate with the “amount of
intersections” it performs. Three main factors affect intersection work and therefore the runtime
of a WCO plan σ : (1) directions of the adjacency lists σ intersects, (2) the amount of intermediate
partial matches σ generates, and (3) how much σ utilizes the intersection cache. We discuss each
effect next.
Directions of Intersected Adjacency Lists: Perhaps surprisingly, there are WCO plans that have
very different runtimes only because they compute their intersections using different directions of
the adjacency lists. The simplest example of this is the asymmetric triangle query a1→a2, a2→a3,
a1→a3. This query has three QVOs, all of which have the same Scan operator, which scans each
u→v edge inG, followed by three different intersections (without utilizing the intersection cache):

• σ1:a1a2a3: intersects both u and v’s forward lists.
• σ2:a2a3a1: intersects both u and v’s backward lists.
• σ3:a1a3a2: intersects u’s forward and v’s backward lists.

Table 5 shows a demonstrative experiment studying the performance of each plan on the Berk-
Stan and LiveJournal graphs (the i-cost column in the table will be discussed in Section 3.1.3 mo-
mentarily). For example, σ1 is 12.1× faster than σ2 on the BerkStan graph. Which combination of
adjacency list directions is more efficient depends on the structural properties of the input graph,
e.g., forward and backward adjacency list distributions.

Different WCO plans generate different partial matches leading to different amount of intersec-
tion work. Consider the tailed triangle query in Figure 4(b), which can be evaluated by two broad
categories of WCO plans:

• Edge-2Path: Some plans, such as QVOa1a2a4a3, extend scanned edgesu→v to 2-edge paths
(u→v←w), and then close a triangle from one of 2 edges in the path.

• Edge-Triangle: Another group of plans, such as QVO a1a2a3a4, extend scanned edges to
triangles and then extend the triangles by one edge.
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Fig. 4. Queries used to demonstrate the effects of QVOs.

Table 6. Runtime (seconds), Intermediate Partial Matches (part.
m.), and i-cost of Different QVOs for the Tailed Triangle Query

Amazon Epinions
QVO time part. m. i-cost time part. m. i-cost
a1a2a3a4 0.9 15M 176M 0.9 4M 0.9B
a1a3a2a4 1.4 15M 267M 1.0 4M 0.9B
a2a3a1a4 2.4 15M 267M 1.7 4M 1.0B
a1a4a2a3 4.3 35M 640M 56.5 55M 32.5B
a1a4a3a2 4.6 35M 1.4B 72.0 55M 36.5B

Let |E |, |2Path |, and |	| denote the number of edges, 2-edge paths, and triangles. Ignoring the
directions of extensions and intersections, the Edge-2Path plans do |E | many extensions plus
|2Path | many intersections, whereas the Edge-Triangle plans do |E | many intersections and |	|
many extensions. Table 6 shows the runtimes of the different plans on Amazon and Epinions
graphs with intersection caching disabled (again the i-cost column will be discussed momentarily).
The first 3 rows are the Edge-Triangle plans. Edge-Triangle plans are significantly faster than
Edge-2Path plans, because in unlabelled queries |2Path | is always at least |	| and often much
larger. Which QVOs will generate fewer intermediate matches depend on several factors: (i) the
structure of the query; (ii) for labelled queries, on the selectivity of the labels on the query; and (3)
the structural properties of the input graph, e.g., graphs with low clustering coefficient generate
fewer intermediate triangles than those with a high clustering coefficient.
Intersection Cache Hits: The intersection cache of our E/I operator is utilized more if the QVO
extends (k–1)-matches to ak using adjacency lists with indices from a1 . . . ak–2. Intersections that
access the (k–1)th index cannot be reused, because ak–1 is the result of an intersection performed
in a previous E/I operator and will match to different vertex IDs. Instead, those accessing indices
a1 . . . ak−2 can potentially be reused. We demonstrate that some plans perform significantly better
than others only because they can utilize the intersection cache. Consider a variant of the diamond-
X query in Figure 4(a). One type of WCO plans for this query extend u→v edges to (u,v,w ) sym-
metric triangles by intersecting u’s backward and v’s forward adjacency lists. Then each triangle
is extended to complete the query, intersecting again the forward and backward adjacency lists
of one of the edges of the triangle. There are two sub-groups of QVOs that fall under this type
of plans: (i) a2a3a1a4 and a2a3a4a1, which are equivalent plans due to symmetries in the query,
so will perform exactly the same operations, and (ii) a1a2a3a4, a3a1a2a4, a3a4a2a1, and a4a2a3a1,
which are also equivalent plans. Importantly, all of these plans cumulatively perform exactly the
same intersections but those in group (i) and (ii) have different orders in which these intersections
are performed, which lead to different intersection cache utilizations.

Table 7 shows the performance of one representative plan from each sub-group: a2a3a1a4 and
a1a2a3a4, on several graphs. The a2a3a1a4 plan is 4.4× faster on Epinions and 3× faster on Amazon.
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Table 7. Runtime (seconds), Intermediate Partial Matches (part.
m.), and i-cost of Some QVOs for the Symmetric Diamond-X Query

Amazon Epinions
QVO time part. m. i-cost time part. m. i-cost
a2a3a1a4 1.0 11M 0.1B 0.9 2M 0.1B
a1a2a3a4 3.0 11M 0.3B 4.0 2M 1.0B

This is because when a2a3a1a4 extends a2a3a1 triangles to complete the query, it will be accessing
a2 and a3, so the first two indices in the triangles. For example if (a2 = v0, a3 = v1) extended to t
triangles (v0,v1,v2), . . . , (v0,v1,vt+2), these partial matches will be fed into the next E/I operator
consecutively, and their extensions to a4 will all require intersecting v0 and v1’s backward adja-
cency lists, so the cache would avoid t–1 intersections. Instead, the cache will not be utilized in the
a1a2a3a4 plan. Our cache gives benefits similar to factorization [52]. In factorized processing, the
results of a query are represented as Cartesian products of independent components of the query.
In this case, matches of a1 and a4 are independent and can be done once for each match of a2a3. A
study of factorized processing is an interesting topic for future work.

3.1.3 Cost Metric for WCO Plans. We introduce a new cost metric called intersection cost (i-cost),
which we define as the size of adjacency lists that will be accessed and intersected by different
WCO plans. Consider a WCO plan σ that evaluates sub-queriesQ2, . . . ,Qm , respectively, whereQ
= Qm . Let t be a (k–1)-match of Qk–1 and suppose t is extended to instances of Qk by intersecting
a set of adjacency lists, described with adjacency list descriptors Ak–1. Formally, i-cost of σ is as
follows: ∑

Qk−1∈Q2 ...Qm−1

∑

t ∈Qk–1

∑

(i,dir )∈Ak–1
s.t. (i, dir) is accessed

|t[i].dir |. (1)

We discuss how we estimate i-costs of plans in Section 3.4. For now, note that Equation (1) captures
the three effects of QVOs we identified: (i) the |t .dir | quantity captures the sizes of the adjacency
lists in different directions; (ii) the second summation is over all intermediate matches, capturing
the size of intermediate partial matches; and (iii) the last summation is over all adjacency lists
that are accessed, so ignores the lists in the intersections that are cached. For the demonstrative
experiments we presented in the previous section, we also report the actual i-costs of different
plans in Tables 5, 6, and 7. The actual i-costs are measured in a profiled run of each query. Notice
that in each experiment, i-costs of plans rank in the correct order of runtimes of plans.

There are alternative cost metrics from literature, such as the Cout [16] and Cmm [35] metrics,
that would also do reasonably well in differentiating good and bad WCO plans. However, these
metrics capture only the effect of the number of intermediate matches. For example, they would
not differentiate the plans in the asymmetric triangle query or the symmetric diamond-X query,
i.e., the plans in Tables 5 and 7 have the same actual Cout and Cmm costs.

3.2 Full Plan Space and Dynamic Programming Optimizer

In this section, we describe our full plan space, which contain plans that include binary joins in
addition to the E/I operator, the costs of these plans, and our dynamic programming optimizer.

3.2.1 Hybrid Plans and HashJoin Operator. In Section 3.1, we represented a WCO plan σ as a
chain, where each internal node ok had a single child labelled with Qk , which was the projection
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of Q onto the first k query vertices in σ . A plan in our full plan space is a rooted tree as follows.
Below, Qk refers to a projection of Q onto an arbitrary set of k query vertices.

• Leaf nodes are labeled with a single query edge of Q .
• Root is labeled with Q .
• Each internal node ok is labeled with Qk = {Vk ,Ek }, with the projection constraint that Qk

is a projection of Q onto a subset of query vertices. ok has either one child or two children.
If ok has one child ok–1 with label Qk–1 = {Vk–1, Ek–1}, then Qk–1 is a subgraph of Qk with
one query vertex qv ∈ Vk and qv ’s incident edges in Ek missing. This represents a WCO-
style extension of partial matches of Qk–1 by one query vertex to Qk . If ok has two children
oc1 and oc2 with labels Qc1 and Qc2, respectively, then Qk = Qc1 ∪Qc2 and Qk � Qc1 and
Qk � Qc2. This represents a binary join of matches Qc1 and Qc2 to compute Qk .

As before, leaves map to Scan operators, an internal node ok with a single child maps to an E/I
operator. If ok has two children, then it maps to a Hash-Join operator:
Hash-Join: We use the classic hash join operator, which first creates a hash table of all of the
tuples of Qc1 on the common query vertices between Qc1 and Qc2. The table is then probed for
each tuple of Qc2.

Our plans are highly expressive and contain several classes of plans: (1) WCO plans from the pre-
vious section, in which each internal node has one child; (2) BJ plans, in which each node has two
children and satisfy the projection constraint; and (3) hybrid plans that satisfy the projection con-
straint. We show in our supplementary Appendix C that our hybrid plans contain EmptyHeaded’s
minimum-width GHD-based hybrid plans that satisfy the projection constraint. For example the
hybrid plan in Figure 1(c) corresponds to a GHD for the diamond-X query with width 3/2. In ad-
dition, our plan space also contains hybrid plans that do not correspond to a GHD-based plan.
Figure 2 shows an example hybrid plan for the 6-cycle query that is not in EmptyHeaded’s plan
space. As we show in our evaluations, such plans can be very efficient for some queries.

The projection constraint prunes two classes of plans:

1. Our plan space does not contain BJ plans that first compute open triangles and then
close them. Consider a triangle QT that is a subquery of a larger query Q . Suppose QT

is a1→a2→a3, a1→a3. Then due to the projection constraint, we do not enumerate any
plan that contains an open triangle QOT , e.g., a1→a2→ a3, of QT , with, say, a later binary
join to close the a1→a3 edge. This is because QOT is not a projection of Q , as it does not
contain the a1→a3 edge. Such BJ plans are in the plan spaces of existing optimizers, e.g.,
Postgres, MySQL, and Neo4j. This is not a disadvantage, because for each such plan, there
is a more efficient WCO plan that computes triangles directly with an intersection of two
already-sorted adjacency lists. Specifically, we force the triangles to be computed by ex-
tending edges (which are projections of Q) directly to QT using WCO-style intersections.

2. More generally, some of our hybrid plans contain the same query edge ai→aj in multi-
ple parts of the join tree, which may look redundant, because ai→aj is effectively joined
multiple times. There can be alternative plans that remove ai→aj from all but one of the
sub-trees. For example, consider the two hybrid plans P1 and P2 for the diamond-X query
in Figure 5(a) and (b), respectively. P2 is not in our plan space, because it does not satisfy
the projection constraint, because a2→a3 is not in the right sub-tree. Omitting such plans
is also not a disadvantage, because we duplicate ai→aj only if it closes cycles in a sub-tree,
which effectively is an additional filter that reduces the partial matches of the sub-tree. For
example, on the Amazon graph dataset, P1 takes 14.2 s and P2 takes 56.4 s so P1 is 3.97×
faster than P2.
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Fig. 5. Two plans: P1 shares a query edge and P2 does not.

3.2.2 Cost Metric for General Plans. A Hash-Join operator performs a very different compu-
tation than E/I operators, so the cost of Hash-Join needs to be normalized with i-cost. This is an
approach taken by DBMSs to merge costs of multiple operators, e.g., a scan and a group-by, into
a single cost metric. Consider a Hash-Join operator ok that will join matches of Qc1 and Qc2 to
computeQk . Suppose there are n1 and n2 instances ofQc1 andQc2, respectively. Then ok will hash
n1 number of tuples into a table and probe this table n2 times. We compute two weight constants
w1 andw2 and calculate the cost of ok asw1n1 +w2n2 i-cost units. These weights can be hardcoded
as done in the Cmm cost metric [35], but we pick them empirically.

3.2.3 Dynamic Programming Optimizer. Algorithm 1 shows the pseudocode of our optimizer.
Our optimizer takes as input a query Q (VQ ,EQ ). We start by enumerating and computing the
cost of all WCO plans (line 1). We discuss this step momentarily. We then initialize the cost of
computing 2-vertex sub-queries of Q , so each query edge, to the selectivity of the label on the
query edge (line 2). Then starting from k = 3 up to |VQ |, for each k-vertex sub-query Qk of Q , we
find the lowest cost plan P∗Qk

to compute Qk in three different ways:

(i) P∗Qk
is the lowest cost WCO plan that we enumerated (line 5).

(ii) P∗Qk
extends the best plan P∗Qk–1

for aQk–1 by an E/I operator (Qk–1 contains one fewer query

vertex than Qk ) (lines 7–10).
(iii) P∗Qk

merges two best plans P∗Qc1
and P∗Qc2

for Qc1 and Qc2, respectively, with a Hash-Join

(lines 12–15).

The best plan for each Qk is stored in a sub-query map. We enumerate all WCO plans, be-
cause the best WCO plan P∗Qk

for Qk is not necessarily an extension of the best WCO plan P∗Qk–1

for a Qk–1 by one query vertex. That is because P∗Qk
may be extending a worse plan Pbad

Qk–1
for

Qk–1 if the last extension has a good intersection cache utilization. Strictly speaking, this prob-
lem can arise when enumerating hybrid plans, too, if an E/I operator in case (ii) above follows a
Hash-Join. A full plan space enumeration would avoid this problem completely but we adopt dy-
namic programming to make our optimization time efficient, i.e., to make our optimizer efficient,
we are potentially sacrificing picking the plan with the lowest estimated-cost. However, we verified
that our optimizer returns the same plan as a full enumeration optimizer in all of our experiments
in Section 6. So at least for our experiments there, we have not sacrificed optimality.

Finally, our optimizer omits plans that contain a Hash-Join that can be converted to an E/I.
Consider the a1→a2→a3 query. Instead of using a Hash-Join to materialize the a2→a3 edges and
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ALGORITHM 1: DP Optimization Algorithm

Require: Q (VQ ,EQ )
1: WCOP = enumerateAllWCOPlans(Q) // WCO plans

2: QPMap: init each ai
le−−→aj ’s cost to the μ (le )

3: for k = 3, . . . , |VQ | do

4: for Vk ⊆ V s.t. |Vk |=k do

5: Qk (Vk ,Ek )=ΠVk
Q ; bestP = WCOP(Qk ); minC =∞

6: // Find best plan that extends to Qk by one query vertex

7: for vj ∈ Vk let Qk–1 (Vk–1,Ek–1) = ΠVk –vj
Qk do

8: P = QPMap(Qk–1).extend(Qk );
9: if cost(P) < minC then

10: bestPlan = P;

11: // Find best plan that generates Qi with a binary join

12: for Vc1,Vc2⊂Vk : Qc1=ΠVc1Qk ,Qc2=ΠVc2Qk do

13: P = join(QPMap(Qc1), QPMap(Qc2));
14: if cost(P) < minC then

15: bestPlan = P;

16: QPMap(Qk ) = bestPlan;

17: return QPMap(Q);

then probe a scan of a1→a2 edges, it is more efficient to use an E/I to extend a1→a2 edges to a3

using a2’s forward adjacency list.

3.3 Plan Generation for Very Large Queries

Our optimizer can take a very long time to generate a plan for large queries. For example, enu-
merating only the best WCO plan for a 20-clique requires inspecting 20! different QVOs, which
would be prohibitive. To overcome this, we further prune plans for queries with more than 10
query vertices as follows:

• We avoid enumerating all WCO plans. Instead, WCO plans get enumerated in the DP part
of the optimizer. Therefore, we possibly ignore good WCO plans that benefit from the in-
tersection cache.

• At each iteration k , out of the tk many plans that evaluate a k-vertex sub-query of Q we
only keep the r lowest cost plans (5 by default). At iteration k + 1, we will extend these r
plans to tk+1 many plans that evaluate (k + 1)-vertex sub-queries but we will again keep on
the top r , so on and so forth.

3.4 Cost and Cardinality Estimation

To assign costs to the plans we enumerate, we need to estimate: (1) the cardinalities of the partial
matches different plans generate; (2) the i-costs of extending a sub-queryQk–1 toQk by intersecting
a set of adjacency lists in an E/I operator; and (3) the costs of Hash-Join operators. We focus on
the setting where each subquery Qk has labels on the edges and the vertices. In the remainder of
this section, we describe how we make these estimations using a data structure called the subgraph

catalogue. However, we emphasize that our optimizer can be used with any estimation technique
that can estimate i-cost and cardinalities of partial matches of sub-queries and a detailed study of
advanced cost and cardinality techniques is beyond this article’s scope and is left for future work.

Table 8 shows an example catalogue. Each entry contains a key (Qk–1,A, alk

k
), whereA is a set of

(labelled) query edges and alk

k
is a query vertex with label lk . Let Qk be the subgraph that extends
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Table 8. A Subgraph Catalogue

(Qk–1 A lk ) |A| μ(Qk )

(1la
lx−→2lb ; L1:2

lx−→; 3la ) |L1 |:4.5 3.8

(1la
lx−→2lb ; L1:2

lx−→; 3lb ) |L1 |:4.5 2.4

(1la
lx−→2lb ; L1:2

ly

−→; 3la ) |L1 |:8.0 3.2

(1la
lx−→2la ; L1:1

lx−→, L2:2
lx−→; 3la ) |L1 |:4.2, |L2 |:5.1 1.5

(1la
lx−→2la ; L1:1

lx←−, L2:2
lx←−; 3la ) |L1 |:9.8, |L2 |:8.4 2.5

(...; ...; ...) ... ...

A is a set of adjacency list descriptors; μ is selectivity.

Qk–1 with a query vertex labelled with alk

k
and query edges inA. Each entry contains two estimates

for extending a match of a sub-query Qk–1 to Qk by intersecting the adjacency lists A describes:

1. |A|: Average sizes of the lists in A that are intersected.
2. μ(Qk ): Average number of Qk that will extend from one Qk–1, i.e., the average number of

vertices that: (i) are in the extension set of intersecting the adjacency lists A; and (ii) have
label lk .

In Table 8, the query vertices of the input subgraph Qk–1 are shown with canonicalized integers,
e.g., 0, 1 or 2, instead of the non-canonicalized ai notation we used before. Note that Qk–1 can be
extended to Qk using different adjacency lists A with different i-costs. The fourth and fifth entries
of Table 8, which extend a single edge to an asymmetric triangle, demonstrate this possibility.

3.4.1 Catalogue Construction. For each inputG, we construct a catalogue containing all entries
that extend an at most h-vertex subgraph to an (h+1)-vertex subgraph. By default, we set h to 3.
When generating a catalogue entry for extending Qk–1 to Qk , we do not find all instances of Qk–1

and extend them to Qk . Instead, we first sample Qk–1. We take a WCO plan that extends Qk–1

to Qk . We then sample z random edges (1,000 by default) uniformly at random from G in the
Scan operator. The last E/I operator of the plan extends each partial match t it receives to Qk by
intersecting the adjacency lists inA. The operator measures the size of the adjacency lists inA and
the number of Qk ’s this computation produced. These measurements are averaged and stored in
the catalogue as |A| and μ(Qk ) columns.

3.4.2 Cost Estimations. We use the catalogue to do three estimations as follows:
1. Cardinality of Qk : To estimate the cardinality of Qk , we pick a WCO plan P that computes
Qk through a sequence of (Q j–1, Aj , lj ) extensions. The estimated cardinality of Qk is the product
of the μ(Aj ) of the (Q j–1, Aj , lj ) entries in the catalogue. If the catalogue contains entries with up
to h-vertex subgraphs and Qk contains more than h nodes, then some of the entries we need for
estimating the cardinality of Qk will be missing. Suppose for calculating the cardinality of Qk , we
need the μ(Ax ) of an entry (Qx–1, Ax , lx ) that is missing, because Qx–1 contains x–1 > h query
vertices. Let z = (x–h–1). In this case, we remove each z-size set of query vertices a1, . . . az from
Qx–1 and Qx , and the adjacency list descriptors from Ax that include 1, . . . , z in their indices. Let
(Qy–1, Ay , ly ) be the entry we get after a removal. We look at the μ(Ay ) of (Qy–1, Ay , ly ) in the
catalogue. Out of all such z set removals, we use the minimum μ(Ay ) we find.

As an example, consider a missing entry for extending Qk–1= 1→2→3 by one query vertex to 4
by intersecting three adjacency lists all pointing to 4 from 1, 2, and 3. For simplicity, let us ignore
the labels on query vertices and edges. The resulting sub-query Qk will have two triangles: (i)
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an asymmetric triangle touching edge 1→2 and (ii) a symmetric triangle touching 2→3. Suppose
entries in the catalogue indicate that an edge on average extends to 10 asymmetric triangles but
to 0 symmetric triangles. We estimate thatQk–1 will extend to zeroQk taking the minimum of our
two estimates.
2. I-cost of E/I operator: Consider an E/I operator ok extending Qk–1 to Qk using adjacency lists
A. We have two cases:

• No intersection cache: When ok does not utilize the intersection cache, we estimate its i-cost
as:

i-cost(ok ) = μ (Qk–1) ×
∑

Li ∈A
|Li |. (2)

Here, μ (Qk–1) is the estimated cardinality of Qk–1, and |Li | is the average size of the adja-

cency list Li ∈ A that are logged in the catalogue for entry (Qk–1,A, alk

k
) (i.e., the |A| column).

• Intersection cache utilization: If two or more of the adjacency list inA, say, Li and Lj , access
the vertices in a partial match Q j that is smaller than Qk–1, then we multiply the estimated
sizes of Li and Lj with the estimated cardinality of Q j instead of Qk–1. This is because we
infer that ok will utilize the intersection cache for intersecting Li and Lj .

Reasoning about utilization of intersection cache is critical in picking good plans. For example, re-
call our experiment from Table 4 to demonstrate that the intersection cache broadly improves all
plans for the diamond-X query. Our optimizer, which is “cache-conscious” picks σ2 (a2a3a4a1). In-
stead, if we ignore the cache and make our optimizer “cache-oblivious” by always estimating i-cost
with Equation (2), it picks the slower σ4 (a1a2a3a4) plan. Similarly, our cache-conscious optimizer
picks a2a3a1a4 in our experiment from Table 7. Instead, the cache-oblivious optimizer assigns the
same estimated i-cost to plans a2a3a1a4 and a1a2a3a4, so cannot differentiate between these two
plans and picks one arbitrarily.
3. Cost of Hash-Joinoperator: Consider a Hash-Join operator joining Qc1 and Qc2. The esti-
mated cost of this operator is simply w1n1 + w2n2 (recall Section 3.2.2), where n1 and n2 are now
the estimated cardinalities of Qc1 and Qc2, respectively.

3.4.3 Limitations. Similarly to Markov tables [3] and MD- and Pattern-tree summaries [39],
our catalogue is an estimation technique that is based on storing information about small size
subgraphs and extending them to make estimates about larger subgraphs. We review these tech-
niques in detail and discuss our differences in Section 7. Here, we discuss several limitations that
are inherent in such techniques. We emphasize again that our optimizer can be used with more
advanced cardinality estimation techniques and studying such techniques is beyond the scope of
this article.

First, as expected our estimates (both for i-cost and cardinalities) get worse as the size of the
subgraphs for which we make estimates increase beyond h. Equivalently, as h increases, our esti-
mates for fixed-size large queries get better. At the same time, the size of the catalogue increases
significantly as h increases. Similarly, the size of the catalogue increases as graphs get more het-
erogenous, i.e., contain more labels. Second, using larger sample sizes, i.e., larger z values, increase
the accuracy of our estimates but require more time to construct the catalogue. Therefore h and z
respectively trade off catalogue size and creation time with the accuracy of estimates. We provide
demonstrative experiments of these tradeoffs in our supplementary Appendix B for cardinality
estimates.
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Fig. 6. Input graph for adaptive QVO example.

Fig. 7. Example adaptive WCO plan.

3.5 Adaptive WCO Plan Evaluation

Recall that the |A| and μ statistics stored in a catalogue entry (Qk–1, A, alk

k
), are estimates of the

adjacency list sizes (and selectivities) for matches of Qk–1. These are estimates based on averages

over many sampled matches of Qk–1. In practice, actual adjacency list sizes and selectivities of
individual matches of Qk–1 can be very different. Let us refer to parts of plans that are chains of
one or more E/I operators as WCO subplans. Consider a WCO subplan of a fixed plan P that has a
QVO σ ∗ and extends partial matches of a sub-query Qi to matches of Qk . Our optimizer picks σ ∗

based on the estimates of the average statistics in the catalogue. Our adaptive evaluator updates
our estimates for individual matches of Qi (and other sub-queries in this part of the plan) based
on actual statistics observed during evaluation and possibly changes σ ∗ to another QVO for each
individual match of Qi .

Example 3.1. Consider the input graph G shown in Figure 6. G contains 3n edges. Consider the
diamond-X query and the WCO plan P with σ = a2a3a4a1. Readers can verify that this plan will
have an i-cost of 3n: 2n from extending solid edges, n from extending dotted edges, and 0 from
extending dashed edges. Now consider the following adaptive plan that picks σ for the dotted and
dashed edges as before but σ ′ = a2a3a1a4 for the solid edges. For the solid edges, σ ′ incurs an i-cost
of 0, reducing the i-cost to n.

3.5.1 Adaptive Plans. We optimize subgraph queries as follows. First, we get a fixed plan P
from our dynamic programming optimizer. If P contains a chain of two or more E/I operators
oi ,oi+1 . . . ,ok , then we replace it with an adaptive WCO plan. The adaptive plan extends the first
partial matches Qi that oi takes as input in all possible (connected) ways to Qk . In WCO plans oi

is Scan and Qi is one query edge. Therefore in WCO plans, we fix the first two query vertices in
a QVO and pick the rest adaptively. Figure 7 shows the adaptive version of the fixed plan for the
diamond-X query from Figure 1(b). In addition, we adapt hybrid plans if they have a chain of two
or more E/I operators.
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3.5.2 Adaptive Operators. Unlike the operators in fixed plans, our adaptive operators can feed
their outputs to multiple operators. An adaptive operator oi is configured with a function f that
takes a partial match t ofQi and decides which of the next operators should be given t . f consists of
two high-level steps: (1) For each possible σj that can extendQi toQk , f re-evaluates the estimated
i-cost ofσj by re-calculating the cost of plans using updated cost estimates (explained momentarily).
oi gives t to the next E/I operator of σ ∗j that has the lowest re-calculated cost. The cost of σj is re-

evaluated by changing the estimated adjacency list sizes that were used in cardinality and i-cost
estimations with actual adjacency list sizes we obtain from t .

Example 3.2. Consider the diamond-X query from Figure 1(a) and suppose we have an adaptive
plan in which the Scan operator matches edges to a2a3, so for each edge needs to decide whether
to pick the ordering σ1 : a2a3a4a1 or σ2 : a2a3a1a4. Suppose the catalogue estimates the sizes of
|a2→| and |a3→| as 100 and 2000, respectively. So we estimate the i-cost of extending an a2a3

edge to a2a3a4 as 2100. Suppose the selectivity μ j of the number of triangles this intersection will
generate is 10. Suppose Scan reads an edge u→v where u’s forward adjacency list size is 50 and
v’s backward adjacency list size is 200. Then we update our i-cost estimate directly to 250 and μ j

to 10 × (50/100) × 200/2000 = 0.5.

As we show in our evaluations, adaptive QVO selection improves the performance of many
WCO plans but more importantly guards our optimizer from picking bad QVOs.

4 OPTIMIZING CONTINUOUS QUERIES

We next consider evaluating continuous subgraph queries that are registered in a GDBMS and
maintaining their outputs as updates arrive to the graphs. Continuous queries provide trigger func-
tionality to developers and are used to develop applications that require detecting the emergence
and/or deletion of subgraph patterns in a graph, e.g., the MagicRecs recommendation application
from Twitter [23] that continuously monitors diamonds in the Twitter social network. We consider
the setting where a set of subgraph queries Q̄ are registered in a system and a series of updates
Eδ1 , Eδ2 \ldots arrive at G and our goal is to detect the emergence and deletions of subgraphs that
match any of the Q ∈ Q̄ . In this section, we describe our end-to-end solution to optimizing these
queries using WCO plans.

Our approach is based on the Delta Generic Join incremental view maintenance algorithm that
we reviewed in Section 2. References [6] and [29] used this framework for evaluating single sub-
graph queries, respectively in a distributed and single node settings, where QVOs were picked
arbitrarily or using simple heuristics. We build upon this framework and study how to evaluate
multiple continuous queries and select the QVOs in a cost-based optimizer using the i-cost met-
ric we introduced in Section 3. Our optimizer generates a single low i-cost combined plan, which
combines the individual plans generated for each delta subgraph query and shares common com-
putations and evaluates all of the queries in Q̄ . The outline of this section is as follows:

• Section 4.1 describes our WCO plan space for delta subgraph queries and our combined
plans for sets of delta subgraph queries.

• Section 4.2 describes our greedy optimizer that picks QVOs for each delta subgraph query
and shares subplans to generate a combined plan.

• Section 4.3 describes our partial intersection sharing technique that allows sharing of com-
putations across the E/I operators that perform different intersections but have partial over-
laps in the intersections. We motivate this optimization by an important empirical obser-
vation we make about the limitation of computation sharing in combined plans.
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Fig. 8. Individual and combined plans for delta subgraph queries of a diamond query example.

In the remainder of the section, we assume that given a batch of updates Eδ , there are three
types of adjacency lists in memory for each vertex v in G:

• delta contains v’s neighbours in Eδ .
• old contains v’s neighbours in G before the update.
• new contains v’s neighbours in G after the update.

4.1 Optimizing Plans for Delta Subgraph Queries and Combined Plans

Recall from Section 2.2 that Delta Generic Join decomposes each continuous subgraph query Q
into n delta subgraph queries, where n is the number of query edges in Q . Then, Delta Generic
Join picks aQVO for each delta subgraph query starting from the two query vertices that form the
δ query edge and evaluates it one query vertex at a time, and then unions the results.

The QVO for each delta subgraph query is essentially a logical plan. For example, consider the
diamond query a1→a2, a1→a3, a2→a4, a3→a4 and assume for simplicity that the query has a single
query edge label on each query edge. Consider the following delta decomposition of this query:

DSQ1 = a1
δ−→ a2,a1

o−→ a3,a2
o−→ a4,a3

o−→ a4

DSQ2 = a1
n−→ a2,a1

δ−→ a3,a2
o−→ a4,a3

o−→ a4

DSQ3 = a1
n−→ a2,a1

n−→ a3,a2
δ−→ a4,a3

o−→ a4

DSQ4 = a1
n−→ a2,a1

n−→ a3,a2
n−→ a4,a3

δ−→ a4

Figure 8(a) shows four query plans respectively corresponding to the following four QVOs:
a1a2a4a3, a1a3a4a2, a2a4a1a3 and a3a4a1a2. There are two differences between these logical plans
and the ones for one-time subgraph queries from Section 3.1: (i) Each operator oi is a sub-query
Si whose query edges are labeled with δ , n, or o to indicate whether they match Eδ , En , or Eo ,
respectively; and (ii) each internal node has only one child. So the plans do not contain binary
joins. We avoid binary joins, because one branch of a binary join would match sub-queries with
only old or new query edges, which we assume are very large compared to the delta edges (recall
from Section 2.2 that delta subgraph queries have only one δ query edge). Therefore joins in such
branches would lead to very large intermediate results.

We evaluate these plans with Scan and E/I operators, which slightly differ from the ones in
Section 3.1.1:
Scan: Scans only the edges in Eδ , so the edges in the delta adjacency lists and appends a +/−

label to them indicating a deletion or an addition of an edge.
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Extend/Intersect (E/I): Each adjacency list descriptor is now an (i, dir, version) triple.
version can be old or new indicating whether the adjacency list should come from the new or
old adjacency lists of vertices (E/I’s do not access Eδ ).

When evaluating multiple delta subgraph queries at the same time, there might be opportunities
to share computation between the plans. This opportunity arises when plans of two or more delta
subgraph queries contain operators whose outputs are both isomorphic sub-queries, so we do not
need to compute the same sub-queries over and over again. Instead, we can just compute these
sub-queries once and give their results to possibly multiple operators. Due to these opportunities,
instead of evaluating each delta subgraph query separately, we evaluate all of them together using
a combined plan, which we define next.

Definition 4.1 (Combined Plan). Let Q̄ be a set of queries and Q̄DSQ be a set of DSQs correspond-
ing to the union of a delta decomposition for each query in Q̄ . We assume that no two DSQs in
Q̄DSQ are isomorphic as that would imply that Q̄ contains two isomorphic queries (note that two
DSQs from the same query cannot be isomorphic, because according to the decomposition the
number of n- and o-labeled edges in each DSQ is different). A combined plan (CP) for Q̄DSQ is a
directed acyclic graph of Scan and E/I operators that contain: (1) one source Scan operator that
scan δ edges, i.e., updates to the graph; (2) a set of E/I operators that take input from exactly one
other operator (Scan or E/I) but can give outputs to any number of E/I operators; and (3) exactly
|Q̄DSQ | many sink E/I operator, where there is a one to one mapping between the outputs of sink
E/I operators and DSQs in Q̄DSQ , i.e., the output of each DSQ in Q̄DSQ is produced by exactly
one sink E/I operator. An E/I operator produces the output of a DSQ if the subgraph query that it
evaluates is isomorphic to the DSQ considering the edge labels δ , n, and o.

For example, Figure 8(b) shows an example combined plan for the 4 DSQs above. In Figure 8(b),
we omit the ai labels on the query vertices that take different labels for different delta subgraph
queries. Tracing back from each sink operator back to the source (Scan) operator effectively gives a
QVO for one DSQ. For example, the left most sink operator evaluates DSQ1 above and uses exactly
the same QVO as the leftmost DSQ. In fact, the combined plan in Figure 8(b) evaluates the 4 DSQs
in our example using exactly the 4 individual plans from Figure 8(b) but shares some duplicate
operators whose inputs and outputs are isomorphic subgraphs, such as the level 2 E/I operators of
DSQ1 and DSQ2 as well as DSQ3 and DSQ4.

Our continuous subgraph query optimizer aims to find an efficient combined plan evaluating all
of the DSQs of a delta decomposition of a set of registered queries Q̄ in GraphflowDB. Similarly
to one-time queries, we adopt a cost-based approach using the i-cost metric and compute the
estimated cost of a combined plan as the sum of the estimated i-costs of its E/I operators (we take
the cost of Scan operator as 1). When estimating the i-costs of an E/I operator, we use the same
catalogue-based cost estimation formulas described for one-time queries in Section 3.4.2 (recall
the two bullet points under item 2). In particular, we do not differentiate between delta, old, and
new query edges that are used in the operators of the combined plan. There are two reasons for
this: (1) the delta query edges only appear in the source nodes in combined plans, which map to
Scan operator and get a uniform cost of 1; and (2) the differences between the lengths of the old
and new adjacency lists are minor, because we assume there are a small number of edges in each
update to the graph.

We can formally state the optimization problem our optimizer solves for continuous queries. For
simplicity of the formal definition, we assume that a full catalogue is available to the optimizer,
i.e., information about every possible Qk−1 to Qk extension exists in the catalogue. As we explain
momentarily, this assumption holds in our implementation as well, i.e., for continuous queries
GraphflowDB generates a catalogue that contains all the relevant entries for the registered queries.
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Definition 4.2 (Multiple Continuous Subgraph Query Optimization Problem). Given a set of
queries Q̄ and a delta decomposition of these queries Q̄DSQ and an arbitrary full catalogue C ,
find the lowest estimated cost combined plan CP evaluating Q̄DSQ .

We do not establish the hardness of this formal problem in this article and leave this to future
work. However, in our supplementary Appendix A.1, we show that the natural decision version of
a generalized version of this problem, in which we assume that Q̄DSQ can contain arbitrary DSQs
and do not necessarily have to be the set of DSQs from delta decompositions of a set of queries, is
NP-hard. Our reduction is from the maximum common induced subgraph problem [40]. Resolving
if the problem is easier when the DSQs are delta decompositions of a set of queries, which is a
property that holds in our setting, is left for future work.

We end this section with two notes. First, each query Q can be decomposed in multiple ways.
For example, an alternative decomposition for our example diamond query could have started with

DSQ1 : a1
o−→ a2,a1

o−→ a3,a2
δ−→ a4,a3

o−→ a4 instead of a1
δ−→ a2,a1

o−→ a3,a2
o−→ a4,a3

o−→ a4. These
decompositions are not identical. We studied the effects of different decompositions but found
that they make little difference in performance. So we take an arbitrary decomposition of each
query Q and do not consider and optimize alternative decompositions. Second, each delta query
that contains a new query edge can be further decomposed into smaller delta subgraph queries al-

gebraically. For example,DSQ2 = a1
n−→ a2,a1

δ−→ a3,a2
o−→ a4,a3

o−→ a4 above is algebraically equiv-

alent to DSQ21 = a1
δ−→ a2,a1

δ−→ a3,a2
o−→ a4,a3

o−→ a4 ∪ DSQ22 = a1
o−→ a2,a1

δ−→ a3,a2
o−→ a4,a3

o−→
a4, because new edges are unions of delta and old edges. These further decompositions, which
we call expanded delta query decompositions can allow for more sharing opportunities, because
the query edges in delta queries have only two labels (delta and old) instead of three (delta,
old, and new). This can lead to more isomorphic sub-queries but this expansion leads to many
more delta queries, and we observed in practice that this does not lead to significant performance
improvements in our query sets.

4.2 Greedy Optimizer

One approach to optimizing this problem is to find the lowest i-cost QVO for each delta subgraph
query in Q̄DSQ and then merge these individual plans in a combined plan. This approach often
generates reasonably good plans and will form one of our baseline optimizers in our evaluations.
However, this approach does not directly search for sharing opportunities or optimize for the
total i-cost of the combined plan. To do so, we adopt a greedy approach. We start with an empty
combined planCP . In each iteration, the algorithm goes through each QVO of each delta subgraph
query in Q̄DSQ and finds the pair <qvo∗,dsq∗> with the minimum additional cost to CP (ties are
broken randomly). This fixes the QVO of dsq∗ to be qvo∗, and we merge the plan P∗ induced
by <qvo∗,dsq∗> to CP . The minimum additional cost is the extra i-cost introduced by the new
operators added to CP . We remove dsq∗ from Q̄DSQ and repeat this greedy step until Q̄DSQ is
empty. The additional cost of a <qvo,dsq> pair is computed as follows. Let the logical plan induced
by <qvo, dsq> be P . Recall that P is a linear plan that starts with Scan followed by a series of E/I
operators. Then starting from the last operator in P and going to previous operators, we find the
first operator oi ∈ P , that produces matches isomorphic to an operator o′i in CP. If such o′i exists,
then the suffix operators after oi in P are added toCP as suffix operators to o′i . The additional cost
of <qvo,dsq> is the sum of the costs of these suffix operators.

Catalogue Generation: Recall from above that we adopt the same catalogue-based cost and cardi-
nality estimation technique we use for one-time queries and do not differentiate between delta,
old, and new query edges that are used in the operators of the combined plan.
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Fig. 9. Part of a combined plan example shows the transformation from sharing delta plan operators to also
sharing partial intersection work.

However, unlike one-time subgraph queries, where the catalogue entries are limited to entries
with at most h query vertices, when optimizing continuous queries, we generate all necessary
catalogue entries for a given query set Q̄ . This is because continuous queries are long running
and the number of added queries is often small, so even if some of the queries are large in size,
the number of necessary entries for a fixed small number of queries is not large. In contrast, a
system needs a catalogue that can be used to answer arbitrary one-time queries. For example, if a
query Q ∈ Q̄ has six query vertices, we generate a catalogue entry for extending each five-vertex
sub-query Q ′ of Q to Q . This is because our greedy optimizer computes the cost of each possible
QVO for each delta subgraph query, so each of these entries is necessary. As before, each entry is
generated based on sampling.

4.3 Partial Intersection Sharing

Consider two plans, P1 and P2 for two delta subgraph queries corresponding to two QVOs. Suppose
that P1 and P2 compute isomorphic sub-queries until their level i operators but their level i + 1 op-
erators’ outputs are not isomorphic. Let o1

i and o2
i be the level i operators of P1 and P2, respectively,

and o1
i+1 and o2

i+1 be their level i + 1 operators. Our greedy optimizer will share computation across
o1

i and o2
i but not o1

i+1 and o2
i+1. Even though the (i + 2)-matches produced by oi+1

1 oi+1
2 may not be

isomorphic, so the full intersections performed by these operators are not identical, part of the in-
tersections performed by these operators might be common. Consider the combined plan shown in
Figure 9(a), which represents the combination of three plans for three delta subgraph queries. The
third-level operators of these plans perform different intersections that partially match. Specifi-
cally, all of these three operators take as input 2-edge paths, say, u→v→w , and intersect u’s new
forward and w ’s new backward adjacency lists but the middle and right operators also intersect a
third adjacency list. This gives an opportunity to partially share the common two-way intersec-
tion in one operator and complete the remaining intersections in other operators. Partial intersec-
tion sharing is especially important for increasing the amount of computation shared at the last-
level operators, because unless two delta subgraph queries are completely isomorphic, or one is

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 6. Publication date: May 2021.



6:24 A. Mhedhbi et al.

contained in another, the last-level operators of individual plans for delta subgraph queries cannot
be shared. As we show in our evaluations, in some workloads, the majority of the work done can
be in the last-level and sharing partial intersection work yields significant benefits.

We implement partial intersection sharing through two variants of the E/I operator:
E/I-Partial: Similarly to E/I, intersects two or more adjacency lists and outputs the result either
as an adjacency list to the next E/I-Remaining operator and as regular output tuples to next E/I
and E/I-Partial operators.
E/I-Remaining: Given an intersection result from an E/I-Partial operator, intersects it further
with one or more adjacency lists.

Figure 9(b) shows an example plan that partially shares computation in the last-level operators
of the plan in Figure 9(a).

Our optimizer searches for partial intersections as a post processing step once a combined plan
CP with full operator sharing is generated.3 Specifically, starting from the lowest-level Scan op-
erator, we iterate over each operator inCP at levels 1, 2, so on and so forth, up to the last level. For
each operator oj , we iterate over, we inspect the next-level operators in CP that extend the out-
puts of oj . Let S j be that set of successor operators. We enumerate all partial intersections ALDP I

that at least two operators in S j share and calculate how much i-cost reduction sharing ALDP I

would yield. The amount of i-cost reduction is the multiplication of: (1) partial matches of oj ; (ii)
sum of the estimated lengths of the adjacency lists in ALDP I ; and (iii) the number of operators
that share ALDP I minus 1. Let ALD∗P I be the partial intersection that reduces the most i-cost. We
add an E/I-Partial operator opar t that takes as input the outputs of oj

4 and intersects ALD∗P I .
Then we remove ALD∗P I from each operator o′ in S j that contain ALD∗P I and replace o′ with an
E/I-Remaining operator.

5 SYSTEM IMPLEMENTATION

We implemented our new techniques inside GraphflowDB. GraphflowDB is a single machine,
multi-threaded, main memory graph DBMS implemented in Java. The system supports a sub-
set of the Cypher language [53]. We extended the Cypher language with a CONTINUOUS clause to
allow registering continuous subgraph queries. One-time queries and continuous queries are op-
timized respectively by our dynamic programming and greedy optimizers. Our optimizers share
significant code. In particular, they use a single plan enumerator that can be configured to either
generate one-time plans that contain both E/I and HashJoin operators or only WCO plans that
start by scanning delta edges. Our optimizers also use the same catalogue for cost and cardinality
estimations. In the rest, we give implementation details about several other components of the
system.
Storage: We index both the forward and backward adjacency lists and store them in sorted vertex
ID order. Adjacency lists are by default partitioned by the edge labels or by the labels of neighbour
vertices if a single edge label exists. With this partitioning, we can quickly access the edges of
nodes matching a particular edge label and destination vertex label, allowing us to perform filters
on labels very efficiently. Upon an update to the graph, we create the new adjacency lists of the
vertices whose adjacency lists are changing. These are reused from a pool of existing lists to avoid
Java object creations. Once all delta queries are executed, we copy the data of the new adjacency

3Alternatively, partial intersection overlaps can be searched as part of our greedy optimizer. We implemented the post-

processing approach because of its simplicity.
4Note that oj may have been replaced with an E/I-Remaining operator o′j in the previous iteration, in which case opar t

takes as input o′j ’s output.
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Table 9. Datasets Used

Domain Name Nodes Edges
Social Epinions (Ep) 76K 509K

LiveJournal (LJ) 4.8M 69M
Twitter (Tw) 41.6M 1.46B

Web BerkStan (BS) 685K 7.6M
Google (Go) 876K 5.1M

Product Amazon (Am) 403K 3.5M
Citation Patent (Pa) 3.7M 16.5M

lists to the old adjacency lists to update them and reset the adjacency lists in the pool for the next
batch update. All delta edges are kept in a fixed forward array that is also reused across batches.
Query Executor: Our query plans follow a Volcano-style plan execution [22]. Each plan P has one
final Sink operator, which connects to the final operators of all branches in P . The execution starts
from the Sink operator and each operator asks for a tuple from one of its children until a Scan
starts matching an edge. In adaptive parts of one-time plans, an operator oi may be called upon to
provide a tuple from one of its parents, but due to adaptation, provide tuples to a different parent.
We note that our executor can be improved using query compilation techniques [45] or SIMD
instructions for intersecting sorted neighbour ID lists [2, 36]. These techniques are complementary
to our work.
Parallelization: We implemented a work-stealing-based parallelization technique. Let w be the
number of threads in the system. We give a copy of a plan P to each worker and workers steal work
from a single queue to start scanning ranges of edges in the Scan operators. Threads can perform
extensions in the E/I operators without any coordination. Hash tables used in Hash-Join operators
are partitioned into d>>w many hash table ranges. When constructing a hash table, workers grab
locks to access each partition but setting d>>w decreases the possibility of contention. Probing
does not require coordination and is done independently.

6 EVALUATION

In this section, we demonstrate the efficiency of the plans that our one-time and continuous query
optimizers generate. We begin in Section 6.1 by describing the hardware and the datasets we use
in our experiments. Sections 6.2 and 6.3 then present our experiments for one-time and continu-
ous queries, respectively. We refer readers to our supplementary appendix for several additional
experiments throughout the section.

6.1 Setup

6.1.1 Hardware. We use a single machine that has two Intel E5-2670 @2.6 GHz CPUs and 512
GB of RAM. The machine has 16 physical cores and 32 logical cores. Except for our scalability
experiments in Section 6.2.5, we use only one physical core. We set the maximum size of the JVM
heap to 500 GB and keep the default minimum heap size of the JVM. We ran each experiment
twice, one to warm-up the system and recorded measurements for the second run.

6.1.2 Datasets. The datasets we use are in Table 9.5 Our datasets differ in several structural
properties: (i) size; (2) how skewed their forward and backward adjacency lists distribution is; and
(3) average clustering coefficients, which is a measure of the cyclicity of the graph, specifically

5We obtained the graphs from Reference [37] except for the Twitter graph, obtained from Reference [33].
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Fig. 10. Subgraph queries used for evaluations.

the amount of cliques in it. The datasets also come from a variety of application domains: social
networks, the web, and product co-purchasing. For our one-time query experiments, each dataset
catalogue was generated with z = 1,000 and h = 3 except for Twitter, where we set h = 2. For our
continuous query experiments, as we discussed in Section 4.2, we generate all relevant catalogue
entries.

6.1.3 Queries Notation. Our datasets and queries are not labelled by default, and we label them
randomly as done in prior work [9, 24]. For a subgraph query Q or a query set QS , we use the
notation Qi and QSi , respectively, to refer to evaluating Q and QS on a dataset for which we
randomly generate a label l on each edge, where l ∈ {l1, l2, . . . , li }. For example, evaluating Q2 on
Amazon indicates randomly adding one of two possible labels to each data edge in Amazon and
query edge on Q . If a query is unlabelled, then we simply refer to it as Q .

6.2 One-time Query Optimizer Evaluations

In these experiments, we aim to answer five questions relating to one-time subgraph query op-
timization: (1) How good are the plans our optimizer picks? (2) Which type of plans work better
for which queries? (3) How much benefit do we get from adapting QVOs at runtime? (4) How do
our plans and processing engine compare against EmptyHeaded (EH), which is the closest to our
work and the most performant baseline we are aware of? (5) How do our plans compare against
prior work titled “Flexible Caching in Trie Joins” [28], which is another algorithm that extends the
worst-case optimal Leapfrog TrieJoin (LFTJ) algorithm with caching [66]? We also tested the
scalability of our single-threaded and parallel implementation on our largest graphs LiveJournal
and Twitter. Finally, for the completeness of our study, in Appendix D, we compare our plans on
big queries against the subgraph matching algorithm CFL [10].

For the experiments in this section, we used the 14 queries shown in Figure 10, which contain
both acyclic and cyclic queries with dense and sparse connectivity with up to 7 query vertices and
21 query edges. To give a sense of the scale, we report the number of output tuples of the unlabeled
versions of these queries in Table 10. We use both unlabeled and labeled versions of these queries.
When we put labels, these numbers will naturally decrease depending the number of query edges
each query has and the number of labels we use. The majority of these queries are obtained from
real applications and from the literature. For example, queries Q1 and Q2 are used in Reference [2]
and Reference [6], queries Q2–Q7 are used in Reference [38] and Q12 is used in Reference [56].
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Table 10. The Number of Output Tuples for Unlabeled Versions of the Queries in Figure 10
on Amazon (Am), Epinions (Ep), and Google (Go)

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Am 11.6M 118.2M 110.0M 59.0M 64.8M 37.8M 118.9M
Go 28.2M 375.3M 358.4M 239.9M 295.8M 217.0M 2.0B
Ep 3.6M 326.3M 305.0M 87.0M 100.3M 32.0M 320.6M

Q8 Q9 Q10 Q11 Q12 Q13 Q14

Am 558.7M 3.1B 5.8B 3.1B 4.5B 30.2B 907.3M
Go 3.9B 42.5B 61.5B 173.1B 34.2B 266.4B 256.6B
Ep 12.5B 262.1B 1125.2B 7865.1B 1544.5B 39502.0B 32.9B

6.2.1 Plan Suitability For Different Queries and Optimizer Evaluation. To evaluate how good are
the plans our optimizer generates, we compare the runtime of plans we pick against a query’s plan
spectrum, i.e., the set of all plans enumerated by GraphflowDB for the query. This also allows us to
study which types of plans are suitable for which queries. We generated plan spectrums of queries
Q1–Q8 andQ11–Q13 on Amazon without labels, Epinions with 3 labels, and Google with 5 labels.
The spectrums of Q12 and Q13 on Epinions took a prohibitively long time to generate and are
omitted. Figure 11 presents our spectrums for Q1–Q8 and Q11. Figure 12 presents our spectrums
for Q12 and Q13. Each circle in the figures is the runtime of a plan and × is the plan our optimizer
picks. Throughout these experiments, we use the term “optimal plan” to refer to the executed plan
with the lowest runtime, i.e., the plan corresponding to the lowest circle in our plan spectrum
charts.

We first observe that different types of plans are more suitable for different queries. The main
structural properties of a query that govern which types of plans will perform well are how large
and how cyclic the query is. For cliquelike queries, such asQ5, and small cycle queries, such asQ3,
best plans are WCO. On acyclic queries, such as Q11 and Q13, BJ plans are best on some datasets
and WCO plans on others. On acyclic queries WCO plans are equivalent to left deep BJ plans,
which are worse than bushy BJ plans on some datasets. Finally, hybrid plans are best plans for
queries that contain small cyclic structure that do no share edges, such as Q8.

Our most interesting query is Q12, which is a 6-cycle query. Q12 can be evaluated efficiently
with both WCO and hybrid plans (and reasonably well with some BJ plans). The hybrid plans
first perform binary joins to compute 4-paths, and then extend 4-paths into 6-cycles with an in-
tersection. Figure 2 from Section 1 shows an example of such hybrid plans. These plans do not
correspond to the GHDs in EH’s plan space. On the Amazon graph, one of these hybrid plans is
optimal and our optimizer picks that plan. On the Google graph our optimizer picks an efficient
BJ plan although the optimal plan is WCO.

Our optimizer’s plans were broadly close to optimal across our experiments. Specifically, our
optimizer’s plan was optimal in 15 of our 31 spectrums, was within 1.4× of the optimal in 21
spectrum and within 2× in 28 spectrums. In two of the three cases we were more than 2× of
the optimal, the absolute runtime difference was in sub-seconds. Ignoring queries whose plans
generally ran in sub-second latency, there was only one experiment in which our plan was not
close to the optimal plan, which is shown in Figure 11(z). Observe that our optimizer picks different
types of plans across different types of queries. In addition, as we demonstrated withQ12 above, we
can pick different plans for the same query on different datasets (Q8 and Q13 are other examples).

Although we do not study query optimization time in this article, our optimizer generated a
plan within 331 ms in all of our experiments except for Q75 on Google, which took 1.4 s.
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Fig. 11. Runtime (seconds) of the set of all plans enumerated by GraphflowDB for queries Q1–Q8 and Q11.
“x” specifies the plan picked by GraphflowDB.

6.2.2 Adaptive WCO Plan Evaluation. To understand the benefits we get by adaptively picking
QVOs, we studied the spectrums of WCO plans ofQ2,Q3,Q4,Q5, andQ6, and hybrid plans forQ10
on Epinions, Amazon and Google graphs. These are the queries in which our DP optimizer’s fixed
plans contained a chain of two or more E/I operators (so we could adapt them). The spectrum
of Q10 on Epinions took a prohibitively long time to generate and is omitted. Figure 13 shows
the 17 spectrums we generated. In the case of Q2, Q3, and Q4, selecting QVOs adaptively overall
improves the performance of every fixed plan. For example, the fixed plan our DP optimizer picks
for Q3 on Epinions improves by 1.2× but other plans improve by up to 1.6×. Q10’s spectrum for
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Fig. 12. Runtime (seconds) of the set of all plans enumerated by GraphflowDB for queries Q12 and Q13. “x”
specifies the plan picked by GraphflowDB.

Fig. 13. Runtime (seconds) of the set of adaptive plans enumerated by GraphflowDB for queries Q2–Q6 and
Q10. “x” specifies the plan picked by GraphflowDB.
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hybrid plans are similar to Q3 and Q4’s. Each hybrid plan of Q10 computes the diamonds on the
left and triangles on the right and joins on a4. Here, we can adaptively compute the diamonds (but
not the triangles). Each fixed hybrid plan improves by adapting and some improve by up to 2.1×.
OnQ5 most plans’ runtimes remain similar but one WCO plan improves by 4.3×. The main benefit
of adapting is that it makes our optimizer more robust against picking bad QVOs. Specifically, the
deviation between the best and worst plans are smaller in adaptive plans than fixed plans.

The only exception to these observations is Q6, where several plans’ performances get worse,
although the deviation between good and bad plans still become smaller. We observed that for
cliques, the overheads of adaptively picking QVOs is higher than other queries. This is because:
(i) cost re-evaluation accesses many actual adjacency list sizes, so the overheads are high; and (ii)
the QVOs of cliques have similar behaviors: each one extends edges to triangles, then four cliques,
etc.), so the benefits are low.

6.2.3 EmptyHeaded (EH) Comparisons. EH is one of the most efficient systems for one-time
subgraph queries and its plans are the closest to ours. Recall from Section 1 that EH has a cost-
based optimizer that picks a GHD with the minimum width, i.e., EH picks a GHD with the lowest
AGM bound across all of its sub-queries. This allows EH to often (but not always) pick good decom-
positions. However: (1) EH does not optimize the choice of QVOs for computing its sub-queries;
and (2) EH cannot pick plans that have intersections after a binary join, as such plans do not cor-
respond to GHDs. In particular, the QVO that EH picks for a query Q is the lexicographic order
of the variables used for query vertices when a user issues the query. EH’s only heuristic is that
QVOs of two sub-queries that are joined start with query vertices on which the join will happen.
Therefore by issuing the same query with different variables, users can make EH pick a good or
a bad ordering. This shortcoming has the advantage that by making EH pick good QVOs, we can
show that our orderings also improve EH. The important point is that EH does not optimize for
QVOs. We therefore report EH’s performance with both “bad” orderings (EHb ) and “good” order-
ings (EHд). For good orderings, we use the ordering that GraphflowDB picks. For bad orderings, we
generated the spectrum of plans in EH (explained momentarily) and picked the worst-performing
ordering for the GHD EH picks. For our experiments, we ranQ3,Q5,Q7,Q8,Q9,Q12, andQ13 on
Amazon, Google, and Epinions. We first explain how we generated EH spectrums and then present
our results.

EH Spectrums: Given a query, EH’s query planner enumerates a set of minimum width GHDs and
picks one of these GHDs. To define the plan spectrum of EH, we took all of these GHDs, and by
rewriting the query with all possible different variables, we generate all possible QVOs of the sub-
queries of the GHD that EH considers. Figure 14 shows a sample of the spectrums for Q3 and Q7
on Amazon and for Q8 on Epinions along with GraphflowDB’s plan spectrum (including WCO,
BJ, and hybrid plans) for comparison. For Q9, Q12, and Q13, we could not generate spectrums
as every EH plan took more than our 30-minute time limit. For Q7, both GraphflowDB and EH
generate only WCO plans. For Q8, EH generates two GHDs (two triangles joined on a3) whose
different QVOs give four different plans for a total of eight. One of the plans in the spectrum is
omitted as it had memory issues. We note that out of these queries, Q9 was the only query for
which EH generated two different decompositions (ignoring the QVOs of sub-queries) but neither
decomposition under any QVO ran within our time limit on our datasets.
GraphflowDB vs. EmptyHeaded Comparisons: We ran our queries on GraphflowDB with adapt-
ing off. To compare, we ran EH’s plan with good and bad QVOs for Q3, Q5, Q7, Q8 (recall no EH
plan ran within our time limit for Q9, Q12, and Q13). We repeated the experiments once with no
labels and once with two labels. Table 11 shows our results. Except for Q1 on Google and Q82

on Amazon where the difference is only 500 ms and 200 ms, respectively. GraphflowDB is always
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Fig. 14. Runtime (seconds) of the set of all plans enumerated by EmptyHeaded (EH) compared with those
enumerated by GraphflowDB (GF). “x” specifies the plan picked by GraphflowDB.

Table 11. Runtime (seconds) of GraphflowDB (GF) and EmptyHeaded with Good Orderings (EHд ) and Bad
Orderings (EHb )

Q1 Q3 Q32 Q5 Q52 Q7 Q72 Q8 Q82 Q9 Q92 Q12 Q122 Q13 Q132

Am

EHb
EHд

GF

1.0
0.6
0.6

19.0
5.4
5.5

3.4
1.3
2.1

47.1
3.3
1.9

9.2
1.5
0.8

91.4
21.2
9.5

11.6
1.7
0.9

22.2
10.6
5.1

1.8
1.4
2.0

Mm
Mm
24.7

Mm
Mm
2.4

Mm
Mm
209.2

Mm
Mm
14.8

Mm
Mm
48.0

Mm
Mm
11.3

Go
EHb
EHд

GF

1.9
1.4
2.6

444.5
12.0
14.0

42.6
2.1
4.0

401.1
11.3
5.9

77.6
2.3
2.1

1.04K
107.3
48.8

23.4
4.8
3.3

66.6
35.8
17.0

16.0
3.0
4.5

Mm
Mm
236.2

Mm
Mm
6.9

Mm
Mm
510.6

Mm
Mm
73.8

Mm
Mm
1.44K

Mm
Mm
70.1

Ep
EHb
EHд

GF

0.5
0.2
0.4

42.7
26.6
28.1

6.5
1.7
4.6

64.5
3.5
1.5

11.4
0.9
0.6

560.7
45.7
23.7

2.9
0.8
1.2

1.01K
117.2
37.5

22.0
7.0
5.4

Mm
Mm
865.3

Mm
Mm
26.1

Mm
Mm
TL

Mm
Mm
TL

Mm
Mm
95.0k

Mm
Mm
2.35k

T L indicates the query did not finish in 48 hrs. Mm indicates running out of memory.

Fig. 15. Plan (drawn horizontally) with seamless mixing of intersections and binary joins on Q9.

faster than EHb , where the runtime is as high as 68× in one instance. The most performance dif-
ference is on Q5 and Google, for which both our system and EH use a WCO plan. When we force
EH to pick our good QVOs, on smaller size queries EH can be more efficient than our plans. For
example, although GraphflowDB is 32× faster than EHb on Q3 Google, it is 1.2× slower than EHд .
Importantly EHд is always faster than EHb , showing that our QVOs improve runtimes consistently
in a completely independent system that implements WCO join-style processing.

We next discussQ9, which demonstrates again the benefit we get by seamlessly mixing intersec-
tions with binary joins. Figure 15 shows the plan our optimizer picks on Q9 on all of our datasets.
Our plan separately computes two triangles, joins them, and finally performs a 2-way intersection.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 6. Publication date: May 2021.



6:32 A. Mhedhbi et al.

Fig. 16. Example of CTJ’s tree decompositions (TDs) for Q2.

This execution does not correspond to the GHD-based plans of EH, so is not in the plan space of
EH. Instead, EH considers two GHDs for this query but neither of them finished within our time
limit.

6.2.4 CTJ Comparisons. Similarly to Generic Join, LFTJ [66] is a WCO join algorithm that eval-
uates join queries one attribute at a time, so evaluates subgraph queries one query vertex at a
time. Therefore the same optimization problem of picking a good QVO arises when using LFTJ.
An important advantage of these algorithms is their small memory footprints. For example, when
executed in a purely pipelined fashion, LFTJ does not require memory to keep large intermedi-
ate results. Reference [28] observes that by keeping a cache of certain intermediate results and
reusing these results, LFTJ’s performance can be improved. For example, consider evaluating the
“two-triangle” query Q8 and using the QVO a1a2a3a4a5. Note that for each a3 value, irrespective
of the previous a1 and a2 values, the same a4a5 values would be matched. Therefore, if LFTJ keeps
a cache of a3 to a4a5 matches as it extends a3’s, it can save and reuse computation. The algorithm
from Reference [28] called CTJ extends LFTJ with caching. This is a more advanced cache than
our simple intersection cache and in some queries, gives LFTJ benefits that are similar to using the
HashJoin operator in binary or hybrid join plans. For example, consider a hybrid plan forQ8 that
uses a HashJoin to evaluate a3a4a5 triangles on the one side, hashes these on a3, and then probes
this hash table with a1a2a3 triangles. The hash table here is similar to CTJ’s cache and reuses the
computation that was done to compute a3a4a5 triangles for different a3 values.

CTJ generates plans as follows. First CTJ enumerates a set of ordered tree decompositions (TDs),
which are rooted TDs, whose bags have a particular preorder [28]. The adhesion of two parent-
child bags is the number of common attributes they have. Then using a set of heuristics, CTJ picks
one of these TDs. Specifically, CTJ picks a TD with the minimum value for its largest adhesions,
breaking ties with maximizing the number of bags, and then minimizing the sum of adhesions.
One of these TDs is picked arbitrarily (say, TD T ). Then for T , CTJ defines: (1) a set of compatible

QVOs; and (2) a caching scheme. Finally, from the compatible QVOs, one is picked using heuristics
from another reference, Tributary Join [15]. We explain with an example.

Example 6.1. Consider the Q2 diamond query from Figure 10(b). For this query, there are several
TDs that CTJ can pick according to its heuristics. Three of these are shown in Figure 16 (a), (b),
and (c) as they have the same adhesion sizes (which is minimum) and the other tie-break metrics.
Suppose CTJ picks TD12 . A preorder traversal on TD12 orders the bags as follows: (1) {a1,a2,a3};
and (2) {a4,a2,a3}. Next, CTJ removes from each bag the query vertices in the adhesions found in
the root-to-bag path, which yields the ordering: (1) {a1,a2,a3}; and (2) {a4}. These are the variables
owned by each bag. The compatible QVOs are those that order the QVO for each bag and con-
catenating these orderings from root to the leaf. Of these, CTJ uses another cost called Tributary
Join’s [15] cost model to choose the QVO in each bag. We explain Tributary Join momentarily.
Suppose the algorithm picks the QVO a1a2a3a4. For each non-root bag B in TD, CTJ adds a cache
to LFTJ. Suppose the parent of B is p in TD. The cache has (i) as key the query vertices in the
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adhesion of p and B and (ii) as value the query vertices “owned” by B. For example, the cache for
the QVO a1a2a3a4 for TD12 will be from key:{a2,a3} to value:a4.

The focus of CTJ and Reference [28] is to control the memory consumption of LFTJ to increase
its performance and not on how to pick TDs or optimize the QVO selection. For example, while
CTJ can avoid storing the complete joins of subqueries, our binary join and hybrid plans do not
have mechanisms to control for memory. In our setting, we assume that the HashJoin operators
have enough memory to create their hash tables. Instead, our work focuses primarily on efficient
plan selection for queries. There are several important differences between our optimized plans
and the plans CTJ uses:

1. On some queries, the heuristics that CTJ uses to pick a TD cannot distinguish between
efficient TDs from inefficient ones. For example, consider the diamond query Q2 from
Figure 10(b). CTJ’s heuristics will not be able to tie break between TD21 , TD22 , and TD23

in Figure 16(a), (b), and (c), respectively, and pick one of these arbitrarily, which yield dif-
ferent QVOs (and caching schemes). In fact, in the code provided by the users, we noticed
that similar to EH, we can make CTJ pick different TDs and final QVOs, with very differ-
ent runtimes. For instance, TD21 and TD22 on Google lead to runtimes 86.6 s and 806.2 s,
respectively. The difference in runtime is mainly due to a difference in the number of inter-
mediate results, which are 72.94M for TD21 and 1.38B for TD22 . Yet CTJ’s optimizer does not
differentiate between these two TDs and their final QVOs. Instead, our i-cost-based model
can differentiate between these QVOs.

2. Once a TD has been picked, CTJ uses Tributary Join’s [15] technique to pick a QVO within
each bag. Tributary Join studies picking the QVO for LFTJ algorithm in the context of joining
multiple relational tables and picks the QVO based on the distinct values in the attributes of
the relations. This heuristic however is not designed for self-join queries as in our subgraph
queries, where attributes will have the same number of distinct values, specifically |V | (as-
suming every vertex in an input graph has an incoming and outgoing edge). Recall that in
subgraph queries, each binary E(ai ,aj) relation is a replica of the edges of the input graph
G (V ,E). Note that in our evaluations we either use unlabeled queries or add random edge
labels to the edges of our datasets and queries. This effectively partitions the edge table E
into multiple tables, but any differences in the distinct values across these partitions would
be due to random assignment.

3. On some queries CTJ’s plans do not benefit from caching results of sub-queries larger than a
single query edge, due to the heuristics CTJ uses to pick TDs. For example, for a path query,
say, Q13, CTJ considers TD’s in which each bag consists of a single query, edge. Since CTJ
caches the results of a single bag, only results of a single query edge, so adjacency lists can
be cached. This contrasts with traditional binary join plans that can cache sub-paths.

We compared GraphflowDB to CTJ on default versions of queries Q1 to Q14 on Amazon, Google,
and Epinions. We obtained the CTJ code from the authors of Reference [28]. Recall that CTJ’s main
focus is in controlling the cache size. We observed that we obtain the best runtime numbers when
we run CTJ with an unbounded cache size, which implies that CTJ caches every key-value between
each bag. Table 12 shows our results. As we explained above, CTJ can pick between multiple differ-
ent TDs and QVOs depending on how the query is written. In Table 12, we report the best runtime
for CTJ for each query after writing the attributes of the query in every lexicographic order. As
shown in the table, GraphflowDB outperforms the implementation we obtained for CTJ across
these queries, varying from competitive performances to differences that are two orders of magni-
tude in runtime. We note that it is not possible to a very controlled comparison here, because the
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Table 12. Runtime (Seconds) of GraphflowDB (GF) and CTJ

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Am
CTJ
GF

5.1
0.6(8.5x)

38.9
4.7(8.3x)

41.5
5.5(7.6x)

22.6
2.0(11.3x)

21.0
1.9(11.1x)

18.6
3.3(5.6x)

61.1
9.5(6.4x)

Go
CTJ
GF

15.3
2.6(5.9x)

82.7
12.3(6.7x)

86.6
12.0(7.2x)

59.4
4.9(12.1x)

55.7
5.9(9.4x)

64.0
8.6(7.4x)

464.1
48.8(9.5x)

Ep
CTJ
GF

2.3
0.4(5.8x)

88.4
31.5(2.8x)

94.7
26.6(3.6x)

10.5
1.5(7.2x)

9.5
1.5(6.3x)

27.5
3.3(8.3x)

329.2
23.7(13.9x)

Q8 Q9 Q10 Q11 Q12 Q13 Q14

Am
CTJ
GF

94.8
5.1(18.6x)

142.1
56.3(2.5x)

2256.5
20.8(108.5x)

184.2
6.8(27.1x)

878.5
209.2(4.2x)

456.0
48.0(9.5x)

639.6
125.0(5.12x)

Go
CTJ
GF

606.3
17.0(35.7x)

574.4
303.9(1.9x)

94084.1
135.9(692.3x)

8055.1
214.6(37.5x)

3048.5
510.6(6.0x)

2165.4
1440.0(1.5x)

67049.9
5348.7(1.5x)

EP
CTJ
GF

3251.1
37.5(86.7x)

1618.8(1.5x)
2384.8

158274.2
1908.7(82.9x)

T L
12852.5

T L
T L

145K
95027.4(1.5x)

95027.4
3373.1(13.0)

T L indicates the query did not finish in 48 hrs.

Fig. 17. Scalability experiments.

implementations of GraphflowDB plans and CTJ are very different, e.g., the implementations use
different programming languages and data organization. However, the differences we discussed
above contribute to these runtime differences. For example, the plan that CTJ uses for Q13, which
is a path query and where CTJ does not benefit from caching, generates 3.43B many intermediate
tuples on Amazon. In contrast, GraphflowDB’s plan hashes on a4 and generates only 0.39B many
intermediate tuples.

6.2.5 Scalability Experiments. We next demonstrate the scalability of GraphflowDB on larger
datasets and across a larger number of physical cores. The goal of our experiments is to demon-
strate that when more cores are available, our approach can utilize them efficiently. We evaluated
Q1 on LiveJournal and Twitter graphs, Q2 on LiveJournal, and Q14, which is a very difficult 7-
clique query, on Google. We repeated each query with 1, 2, 4, 8, 16, and 32 cores, except we use 8,
16, and 32 cores on the Twitter graph. Figure 17 shows our results. Our plans scale linearly until
16 cores with a slight slow down when moving 32 cores, which is the maximum number of cores
in our hardware. For example, going from 1 core to 16 cores, our runtime is reduced by 13× forQ1
on LiveJournal, 16× for Q2 on LiveJournal, and 12.3× for Q14 on Google.

6.3 Continuous Query Optimizer Evaluations

We next evaluate our optimizer for continuous queries. We aim to answer three main questions: (1)
How much benefit do combined plans get from sharing operators and why? (Section 6.3.2), (2) How
much benefit do combined plans get from sharing partial intersections and why? (Section 6.3.2),
and (3) How good are the plans our optimizer picks? (Section 6.3.3). In Section 6.3.4, we test the
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Fig. 18. Queries used for continuous subgraph query evaluations.

scalability of our implementation on a billion-scale Twitter graph. Finally, for completeness, in
Appendix E, we compare our approach on single queries against TurboFlux, a recent work on
continuous subgraph query evaluation. Although our approaches and implementations are very
different, we found GraphflowDB outperforms TurboFlux by at least 3.3× and by up to 117.5× on
our queries.

6.3.1 Query and Datasets. We used four different query sets:

• SEED: Directed versions of 6 queries from Reference [38] shown in Figure 18(a).
• MagicRecs: Diamond queries of Twitter’s MagicRecs recommender [23] shown in

Figure 18(d).
• 4Cs: All four unique directed 4-cliques as shown in Figure 18(c).
• 4Cs5C: 4Cs set and a 5-clique shown in Figure 18(c) and (b).

Our query sets have structural overlaps across their queries, which is necessary to have sharing
opportunities. We use four datasets: Amazon (Am), Google (Go), Epinions (Ep), and Patents (Pt)
from Table 9. In our scalability experiments, we will also use the Twitter (Tw) dataset. Note that
adding labels on query edges decreases sharing opportunities as delta subgraph queries need to
be both structurally isomorphic and have the same query edge labels. To allow for more sharing
opportunity across queries in our query sets, we keep the edge labels in query sets homogeneous
by labelling them with a single label. Interestingly, as we discuss in Section 6.3.2, adding more
labels on datasets, i.e., making the datasets more heterogeneous, increases benefits of sharing.

6.3.2 Benefits of Combined Plans and Partial Intersection Sharing. To evaluate (i) how much
benefit is gained from sharing computation across plans (both non-greedily and greedily) and (ii)
the benefits of partial intersection sharing, we compared the performance of the plans generated
by four optimizers:

• Bns (for no sharing): Picks the lowest i-cost QVO for each delta subgraph query and runs
each one separately.6

6We also adaptively evaluated the delta subgraph queries in Bns but our query sets contain cliquelike cyclic and benefits

of adapting these queries were minor (see Section 6.2.2).
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Table 13. Runtime (Seconds) of Bns , Bs , Gr , and Gopis on 4Cs, 4Cs5C, SEED, and MagicRec Query Sets

Runtime I-cost Runtime I-cost Runtime I-cost

4Cs1 4Cs2 4Cs3

Am

Bns

Bs

Gr
Grp

6.29
5.56 (1.13x)
5.46 (1.15x)
5.46 (1.15x)

0.602B (65%)
0.478B (1.26x)
0.442B (1.36x)
0.442B (1.36x)

1.33
1.07 (1.24x)
1.01 (1.32x)
0.92 (1.45x)

0.094B (48%)
0.067B (1.40x)
0.060B (1.57x)
0.053B (1.77x)

0.72
0.60 (1.20x)
0.47 (1.53x)
0.46 (1.57x)

0.033B (32%)
0.021B (1.57x)
0.017B (1.94x)
0.015B (2.20x)

Pa

Bns

Bs

Gr
Grp

8.61
5.23 (1.65x)
4.63 (1.86x)
4.28 (2.01x)

0.858B (29%)
0.479B (1.79x)
0.423B (2.03x)
0.383B (2.24x)

3.28
1.76 (1.86x)
1.67 (1.96x)
1.67 (1.96x)

0.178B (12%)
0.081B (2.20x)
0.073B (2.44x)
0.073B (2.44x)

2.12
1.17 (1.81x)
0.97 (2.19x)
0.99 (2.14x)

0.076B (7%)
0.032B (2.38x)
0.025B (3.04x)
0.024B (3.17x)

4Cs5C1 4Cs5C2 4Cs5C3

Am

Bns

Bs

Gr
Grp

13.4
11.8 (1.14x)
11.4 (1.18x)
11.4 (1.18x)

1.226B (35%)
1.015B (1.21x)
0.979B (1.25x)
0.979B (1.25x)

1.87
1.32 (1.42x)
1.20 (1.56x)
1.11 (1.68x)

0.129B (6%)
0.084B (1.54x)
0.075B (1.72x)
0.071B (1.82x)

0.90
0.50 (1.80x)
0.50 (1.80x)
0.45 (2.00x)

0.043B (1%)
0.026B (1.65x)
0.021B (2.05x)
0.020B (2.15x)

Pa

Bns

Bs

Gr
Grp

9.73
5.34 (1.82x)
4.43 (2.20x)
4.50 (2.16x)

1.015B (0%)
0.479B (2.12x)
0.423B (2.40x)
0.383B (2.65x)

4.50
1.66 (2.71x)
1.43 (3.15x)
1.43 (3.15x)

0.217B (0%)
0.081B (2.68x)
0.065B (3.34x)
0.065B (3.34x)

2.84
0.97 (2.93x)
0.81 (3.51x)
0.81 (3.51x)

0.094B (0%)
0.032B (2.94x)
0.024B (3.92x)
0.024B (3.92x)

SEED1 SEED2 SEED3

Am

Bns

Bs

Gr
Grp

28.8
27.3 (1.05x)
26.1 (1.10x)
26.0 (1.11x)

2.675B (59%)
2.322B (1.15x)
2.299B (1.16x)
2.226B (1.20x)

3.60
2.44 (1.48x)
2.44 (1.48x)
2.21 (1.63x)

0.201B (23%)
0.129B (1.56x)
0.125B (1.61x)
0.117B (1.72x)

1.45
0.85 (1.71x)
0.82 (1.77x)
0.84 (1.73x)

0.060B (10%)
0.033B (1.82x)
0.031B (1.94x)
0.030B (2.00x)

Pa

Bns

Bs

Gr
Grp

15.5
9.26 (1.67x)
9.26 (1.67x)
9.26 (1.67x)

1.343B (6%)
0.639B (2.10x)
0.639B (2.10x)
0.639B (2.10x)

7.02
4.38 (1.60x)
3.29 (2.13x)
3.29 (2.13x)

0.261B (4%)
0.116B (2.25x)
0.105B (2.49x)
0.105B (2.49x)

4.01
2.28 (1.76x)
1.77 (2.27x)
1.77 (2.27x)

0.101B (0.3%)
0.044B (2.30x)
0.034B (2.97x)
0.034B (2.97x)

MagicRec1 MagicRec2 MagicRec3

Am
Bns

Bs

Gr

36.6
21.1 (1.73x)
20.9 (1.75x)

5.238B (18%)
2.288B (2.29x)
2.188B (2.39x)

5.41
2.73 (1.98x)
2.73 (1.98x)

0.659B (20%)
0.301B (2.19x)
0.265B (2.49x)

2.03
1.10 (1.85x)
1.05 (1.93x)

0.180B (17%)
0.076B (2.37x)
0.066B (2.73x)

Pa
Bns

Bs

Gr

87.6
44.1 (1.99x)
43.7 (2.00x)

11.16B (16%)
4.484B (2.49x)
4.114B (2.71x)

11.7
6.48 (1.81x)
6.22 (1.88x)

1.406B (14%)
0.537B (1.95x)
0.473B (2.21x)

6.88
3.22 (2.14x)
2.66 (2.59x)

0.435B (13%)
0.159B (2.74x)
0.138B (3.15x)

The percentage value next to Bns total i-cost shows the percentage of work done in the last level.

Values in parentheses show the factor of improvement of the runtime over Bns .

• Bs (for sharing): Puts the plans of Bns into a combined plan.
• Gr: The combined plan generated by our greedy optimizer.
• Grp (for partial intersection sharing): The combined plan from Gr sharing partial intersec-

tions.

We measured the performances of these plans on Amazon, Google, Epinions, and Patents with
one, two, and three labels. In each experiment, we pick 90% of the edges of the input graph G
randomly and pre-load them to GraphflowDB. We then insert the remaining 10% edges in batches
of 5. Table 13 shows our experiments on Patent and Amazon. Appendix F shows our results on
Epinions and Google. The table shows the total runtime and i-cost of Bns , Bs , Gr, and Grp . We
show the i-cost numbers to explain an important pattern we discuss momentarily. The numbers
in the parantheses next to Bs , Gr, and Grp report the relative performance improvements of Gr
and Grp over Bns . We explain the percentage value next to the i-cost value of Bns momentarily.
In the remainder of this section, we make several observations on the experiments reported in

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 6. Publication date: May 2021.



Optimizing One-time and Continuous Subgraph Queries using Worst-case Optimal Joins 6:37

Table 13 and readers can verify that these observations also hold in our experiments reported in
Appendix F.

We start by analyzing the benefits of sharing computations. For this, we compare the Bns and Bs

rows, which use exactly the same QVOs for each delta subgraph query and only differ on whether
or not they share computation. We can also compare Bns and Gr rows but in addition to sharing
vs. not sharing, these plans also differ in the QVOs they use for each delta subgraph query. So, Bns

and Bs comparison is more controlled. First, observe that sharing always improves performance.
Specifically, Bs outperforms Bns by up to 2.93×. However observe also that there are significant
variations in the relative runtime improvements across experiments. We next explain what governs
these differences.

Fundamentally, the runtime improvements of sharing depends on what fraction of Bns ’s work Bs

shares. Equivalently, this fraction depends on how much of the work is done at the operators where
sharing happens in Bs . In our query sets, one good proxy for this is to study the amount of work
that is done in the last-level operators. The last-level operators consist of the operators of the delta
subgraph queries with the largest number of query vertices. Unless two delta subgraph queries
are completely symmetric, which does not happen in our query sets, there can be no computation
sharing in the last-level operators. Therefore, the amount of work done in this level is a good
proxy for how much benefits sharing can give. We report the percentage of i-cost in the last-level
operators in the parentheses next to the i-cost column of Bns . The lower this number, the more
benefits we expect to get from sharing. For example, on Amazon, 4Cs1 this percentage is 65% and
the runtime benefits of Bs is 1.13×, while on MagicRecs1, this percentage is 18% and the runtime
difference is 1.73×. A controlled comparison can be made between 4Cs1 and 4Cs5C1 on the Patents
dataset. On Patents, even though there are matches for the 4Cs query set, there are no matches of
the 4-cliques that are subsets of the 5-clique in 4Cs5C. That is why we see percentage of 0% in the
Patents row of 4Cs5C1, because the last-level operators have no inputs. So when evaluating 4Cs5C1

with Bns , each of 10 delta subgraph queries of the 5-clique query needs to search for matches for
4-cliques over and over again. However, Bs shares the computation of these 10 delta subgraph
queries with the delta subgraph queries from the 4-clique queries, so incurs no additional i-cost
(observe the 0.479B i-cost of Bs both in 4Cs1 and 4Cs5C1 on Patents). So we expect Bs to outperform
Bns by a larger fraction in 4Cs5C1 than in 4Cs1. This is indeed what we observe on Patents: 1.65×
vs. 1.82× in runtime and 1.79× vs. 2.12× in i-cost.

How much work is done at the last-level operators also depends on structural properties of the
input datasets. We focus on two structural properties that give us controlled ways to test their
effects:

(i) Clustering coefficient: This is a measure of how cyclic a graph is and for the number of
cliques there are in a graph. Because all of the queries in 4Cs and 4Cs5C query sets are
cliques, the clustering coefficients of the input graphs allow us to control for how much of
the work is done in the last levels. When the clustering coefficient is low there will be less
cliques in the graph, so the last-level operators, which produce outputs, will do less work.
Let us take as an example the benefits of sharing on 4Cs5C1 on Amazon and Patents, which
respectively have clustering coefficients of 0.42 and 0.08. So we expect more benefits on
Patents than on Amazon. Indeed, this is what we observe. Bs outperforms Bns on Amazon
and Patents, respectively, by a factor of 1.14× and 1.82× in runtime and 1.21× and 2.12× in
i-cost. A similar pattern holds on 4Cs and in fact the rest of our query sets, which are also
cyclic.

(ii) Dataset heterogeneity: The number of labels in the datasets gives us another parameter
we can use to control for the amount of work that’s done at the last levels. Increasing the
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number of labels in a dataset decreases the number of matches of the queries in our query
sets, which have a single label, so less work would be done in the last-level operators. Indeed
readers can observe that the fraction of work done in the last level decreases when the data
heterogeneity increases or we go right on any row in Table 13. Therefore, we expect Bs

to outperform Bns by a larger factor as we go right in the table. For example, on Amazon
SEED row, performance increases from 1.05× to 1.48×, to 1.71× as labels increase from 1 to
2 to 3. This pattern broadly holds in our experiments but there are exceptions. For example,
moving from 1 to 2 labels on Patents and running the SEED query set, we see lower relative
benefits of sharing, a reduction from 1.67× to 1.60×. This is because as we observed above
on Patents there are no 4-cliques so 0% of the work is done in the last-level operator even
when there is a single label on the dataset. So we cannot use this metric as a proxy to predict
the benefits of sharing as labels increase.

We next compare Bs and Gr to answer whether or not our greedy optimizer, which directly
optimizes for a combined low i-cost plan, can find more computation sharing opportunities than
Bs . Observe that across all of our experiments Gr is able to find a plan with better i-cost and runtime.
For example on Patents 4Cs5C2, Gr improves performance over Bns by 3.51×while Bs improves by
2.93× (so an additional 1.21x improvement). Similarly on 4Cs3 Amazon, Gr improves performance
over Bns by 1.53× while Bs improves by 1.20× (so an additional 1.28x improvement). There are
very few exceptions to this pattern (all in Appendix F and in all of them the absolute difference is
less than 140 ms and relative slow down at most 1.04×).

Finally, we compare Grp with Gr to understand how much benefits we get from our partial
intersection sharing optimization. We omit Grp numbers for MagicRecs. This is because to ap-
ply partial intersection sharing, we need three-way intersections and on MagicRecs our Gr plan
only performs two way intersections. Observe that in all of our experiments, Grp either performs
equally or better than Gr (except 3 cases of a total of 48). For example, on Amazon dataset and SEED2

query set, we see that Grp improves performance over Bns by 1.68×while Gr improves over Bns by
1.56× (So an improvement of 1.08×). There is no simple answer to when Grp outperforms Gr more.
For example, we do not observe a clear pattern that increasing the number of labels in input labels
increases the benefits of partial sharing. This is because we perform partial intersection sharing at
all levels, so shifting the amount of work done to lower-level operators does not necessarily imply
that we should expect to benefit less from partial sharing. Importantly, our experiments demon-
strate that partial intersection sharing is robust and improves performance broadly in our experi-
ments. Finally, putting our greedy optimizer’s plan and the partial intersection sharing, we observe
up to 3.51× runtime improvements over Bns and up to 3.92× reduction in i-cost in our experiments.

6.3.3 Goodness of Greedy Optimizer. We next study how good are our greedy optimizer’s com-
bined plans, compared to the space of all combined plans. We compare the plans we pick against
all other possible plans in a query set’s plan spectrum using the same setup as Section 6.3.2. For
this analysis, we pick query sets that consist of one or two queries to ensure that the number of
possible combined plans is small. The queries we evaluate on are the diamond query (QD ), the
diamond-X query (QDX ), and the 4-Clique query (Q4C ) on four datasets. We also evaluate on two
query sets with two queries: one contains two 4-Cliques (Q4Cs ) and the other contains a diamond
and a 4-Clique (QD−4C ). We use all datasets with one and two labels. Except we omit Amazon
with two labels as the runtimes of all plans were less than 1 s. Our greedy optimizer’s plans were
broadly optimal or very close to optimal across our experiments. Figure 19 shows our spectrum
charts. Our optimizer’s plans were optimal in 16 of our 25 spectrums and within 1.15× of the op-
timal in 7 spectrums. In the 2 left cases, we were 1.30× and 1.47× of the optimal and the absolute
runtime difference was 77 ms and 313 ms, respectively.
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Fig. 19. Runtime (seconds) of a sample of the plans enumerated by the continuous query optimizer for
Diamond (QD ), Diamond-X (QDX ), and 4-Clique (Q4C ) and two query sets, one of two 4-Cliques (Q4Cs ) and
the other of a Diamond and a 4-Clique (QD−4C ) on datasets Am, Ep, Go, and Pa with one and two labels.
“x” specifies the plan picked by GraphflowDB.

6.3.4 Scalability. Finally, for completeness of our work, we tested the scalability of our com-
bined plans on our largest graph Twitter dataset and loaded 90% of it to GraphflowDB. We eval-
uated the system on the 4Cs and 4Cs5C query sets. For 4Cs, we inserted 500K random updates in
batches of 5. For 4Cs5C, we inserted 25K updates. Table 14 shows the runtime and output through-
put, i.e., number of cliques output. We are able to output 23.8M cliques per second on the 4Cs5C.
These numbers look competitive with distributed implementation of Delta Generic Join from Ref-
erence [6], which reports outputting 46.5M 4-cliques on a larger graph using 224 cores. A direct
comparison is not possible, since the work from Reference [6] considers a single query at at time,
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Table 14. Continuous Subgraph Queries Scalability Evaluations

Runtime (seconds) Output matches throughput/second

4Cs 1,323 14.5M
4Cs5C 6,627 23.8M

does not contain an optimizer, is designed and implemented for the distributed setting, and is
written in a different programming language.

7 RELATED WORK

Our current work substantially expands a previous conference publication [41], which studied
optimizing one-time subgraph queries using WCO join algorithms. We expand on this work by
studying how to optimize continuous subgraph queries using WCO join algorithms. This includes
the entire Section 4.2 and parts of every section related to continuous subgraph query evalua-
tion. We also expand our experimental evaluation in Section 6 for one-time queries by providing
spectrum analyses for all of our queries.

In the rest of this section, we review related work in WCO join and IVM algorithms, one-time and
continuous subgraph query evaluation algorithms, and cardinality estimation techniques related
to our catalogue. We focus on serial algorithms and single node systems. For join and subgraph
query evaluation, several distributed solutions have been developed in the context of graph data
processing [38, 64], RDF engines [1, 70], or multiway joins of relational tables [4, 6, 54]. We do not
review this literature here in detail. Reference [34] and Reference [58] evaluate multiple one-time
subgraph queries with selective predicates. We omit their detailed review here. There is a rich
body of work on adaptive query processing in relational systems and multiple query processing
in stream processing, for which we refer readers to References [13, 20, 26, 62].

WCO Join Algorithms and IVM: Prior to Generic Join, there were two other WCO join algo-
rithms introduced called NPRR [50] and LFTJ [66]. Similarly to Generic Join, these algorithms
also perform attribute-at-a-time join processing using intersections. We covered EH [2], CTJ [28],
and Tributory Join [15], which are systems and algorithms that use these algorithms for one-time
natural join or subgraph queries in Section 6.

Our continuous subgraph query evaluation is based on the Delta Generic Join [6], an IVM al-
gorithm for join queries. Numerous works exist on IVM of relational queries. A survey of this
literature can be found in Reference [57]. The closest to Delta Generic Join is an IVM algorithm
based on LFTJ from Reference [67], which maintains an index that can be as large as the AGM
bound of the query. Instead, our approach, as also observed in Reference [6], does not maintain
any auxiliary indexes.

DBToaster [5, 31] is another IVM system that generates delta queries to maintain continuous
queries. To incrementally maintain a query Q , DBToaster relies on higher-order IVM. Although
this technique can be used to maintain our join-only continuous subgraph queries, it is primarily
designed for and is efficient on queries with aggregations. In particular, DBToaster maintains all
of the higher order delta queries of Q , and upon an update to the relations, uses ith degree delta
queries to update (i − 1)th degree views. These update computations do not involve any joins and
perform only selections (and other operations such as arithmetic and unions). However, to avoid
joins, DBToaster maintains views that are sub-queries of Q , which can be prohibitively expensive
for the queries we target. For example, to maintain a triangle query Q : R (a,b) �� S (b, c ) ��
T (c,a), DBToaster would use three delta queries, e.g., ΔR (Q ) : ΔR �� S �� T , which is similar to
our delta queries, with the following important difference. To compute ΔR (Q ) without computing
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joins, DBToaster maintains the viewVST = S �� T . Notice that this computes the “open triangles”
(in graph setting). Instead, our processor does not maintain any views other than the original
tables, and executes ΔR �� S �� T from scratch. Note also that because we adopt worst-case
optimal joins in our evaluator, even when evaluating delta queries from scratch, we do not generate
open triangles.

More recent work improves over DBToaster and higher-order IVM techniques [27]. Since
Higher-Order IVM materializes not only the result of Q but also the results of the higher-order
delta query, it struggles to computeQ when it is output size is much larger than that of the database
especially for the in-memory setting. Reference [27] introduces an algorithm to maintain results
of acyclic queries under updates relying instead of materialization on a data structure called Dy-

namic Constant-delay Linear Representation (DCLR). DCLR and the Dynamic Yannakakis
Algorithm introduced guarantee linear time maintenance under updates while using only linear
space in the size of the database. The technique is reminiscent of factorized database representa-
tion and processing [52]. In contrast to DCLR, our delta query IVM technique that we adopted does
not require any space (not even linear space) and can maintain both cyclic and acyclic queries.

Single One-time Subgraph Query Evaluation Algorithms: Many of the earlier subgraph
matching algorithms are based on Ullmann’s branch and bound or backtracking method [65].
The algorithm conceptually performs a query-vertex-at-a-time matching using an arbitrary QVO.
This algorithm has been improved with different techniques to pick better QVOs and filter par-
tial matches, often focusing on queries with labels [17, 18, 63]. Several recent algorithms perform
preprocessing to find candidate vertex sets (the set of possible data vertices for each query vertex),
build an auxiliary data structure for these sets and finally pick a QVO for the evaluation. Such
algorithms include TurboI SO [25], CFL [10], CECI [9], and DP-iso [24]. Each of these algorithms
include optimizations on the auxiliary data structure as well as query processing. TurboI SO , for
example, proposes to merge similar query vertices (same label and neighbours) to minimize the
number of partial matches and once the merged and smaller query is evaluated, perform a Carte-
sian product to enumerate the final outputs. CFL decomposes the query into a dense subgraph and
a forest, and processes the dense subgraph first to reduce the number of partial matches. CFL also
uses an index called compact path index, which estimates the number of matches for each root-
to-leaf query path in the query and is used to enumerate the matches as well. We compare our
approach to CFL in our supplementary Appendix D as its code is available. CECI and DP-iso rely
on an auxiliary data structure that maintains edges between candidates and also rely on multiway
intersections when finding candidate sets. Each of the algorithms has its own optimization, e.g.,
CECI divides the data graph into multiple embedding clusters for parallel processing while DP-iso
relies on an adaptive QVO selection and a pruning technique called pruning by failing sets, which
are partial matches with no possible extensions in the data graph. A systematic comparison of our
approach against these approaches is beyond the scope of this article. Our approach is specifically
designed to be decomposable into operator-based query plans that the query processors of existing
GDBMSs generate and implementable on GDBMSs that adopts a cost-based optimizer.

Another group of algorithms index different structures in input graphs, such as frequent paths,
trees, or triangles, to speed up query evaluation [69, 71]. Such approaches can be complementary
to our approach. For example, Reference [6] in the distributed setting demonstrated how to speed
up Generic Join based WCO plans by indexing triangles in the graph.

Multi-Query Optimization: Computation sharing by identifying common computations arises
in many query processing settings, such as when running a single complex query that contains re-
peated sub-queries, running a batch of queries with common expressions [59, 72], data streaming
systems that perform on-line queries with common aggregations [32], or in systems that maintain
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multiple materialized views [5, 42]. Our continuous subgraph query evaluation setting is an ex-
ample of maintaining multiple views. When a query processor needs to evaluate multiple queries,
instead of using separate individual plans for each query, the task is to construct a consolidated
plan to evaluate all of these queries, ensuring that common subexpressions are evaluated once
and consumed by multiple upstream operators. There as been many prior work that have stud-
ied different aspects of this problem, such as how to detect common sub-expressions, e.g., using
exhaustive [62] or heuristic algorithms [59], or whether to share computation through material-
ization [42, 59] or pipelining [19]. Our approach is based upon these same foundations. Specif-
ically, our combined plans fall under a heuristic method that finds common expressions greed-
ily, similar to Reference [59], and performs the entire computation in a pipelined manner. Build-
ing upon these methods, our work studies how to optimize the delta decompositions of multi-
ple subgraph queries when using the new intersection-based worst-case optimal join algorithms,
for which we use a new i-cost metric, and a partial intersection sharing technique to improve
performance.

Multiple Continuous Subgraph Query Algorithms: EMVM [55] evaluates multiple subgraph
queries under single-edge insertion workloads. Given a set of queries Q̄ , EMVM partitions the
queries in Q̄ into separate query sets Q̄l1 , . . . , Q̄lk

, one for each separate edge predicate li (called
labels) in the queries. Each query set Q̄li

contains as many edge-annotated views (EAVs) of the
same query Q as there are edges with predicate li in Q . EAVs are similar to our delta subgraph
queries. For each Q̄li

, EMVM constructs a larger “merged view” that is similar to our combined
plans. EMVM assumes a query set with highly selective predicates, which is reflected in two main
differences between EMVM and our approach: (1) Merged views are constructed to share as many
edges as possible between the queries on M, ignoring their cyclic structures, and (2) queries are
evaluated one query edge at a time.

Single Continuous Subgraph Query Algorithms: TurboFlux [30] evaluates a query using a
data centric graph (DCG), which is a compressed representation of partial matches of the query
in G (EG ,VG ). Upon updates to G, TurboFlux runs a subgraph matching algorithm on the DCG to
detect instances ofQ . Such processing on compressed data structures is very different from out flat
tuple-based processing and, unlike our approach, seems harder to decompose into existing graph
databases. Our supplementary Appendix E gives a more detailed overview of TurboFlux and its
performance comparison against our approach.

Reference [21] describes a general search localization technique called IncIsoMat that, given an
update e (u,v ) toG computes a region ofG called the affected area that may include an emergence
or deletion of instances of a query Q . Matching instances of Q is found by using any subgraph
matching algorithm on the affected area and is left unspecified. Our delta subgraph query frame-
work automatically localizes its search to the same and sometimes smaller area around e . Finally,
Reference [14] describes a technique called SJ-Tree, which constructs a left-deep query plan P for a
queryQ , where each leaf is either a 1-edge or 2-edge path ofQ . Upon updates to the graph, SJ-Tree
maintains partial matches to each intermediate node of P using a hash join algorithm. SJ-Tree is
designed for queries with highly selective predicates, e.g., the reference assumes that the number
of matches for 2-edge paths are expected to be significantly fewer than 1-edge paths, which does
not hold for many queries in practice. As a result, for many queries, this technique can materialize
prohibitively large intermediate results.

Cardinality Estimation Using Small-size Graph Patterns: Our catalogue is closely related to
Markov tables [3], and MD- and Pattern-tree summaries from Reference [39]. Similarly to our cat-
alogue, both of these techniques store information about small-size subgraphs to make cardinality
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estimates for larger subgraphs. Markov tables were introduced to estimate cardinalities of paths
in XML trees and store exact cardinalities of small size paths to estimate longer paths. MD- and
Pattern-tree techniques store exact cardinalities of small-size acyclic patterns, and are used to esti-
mate the cardinalities of larger subgraphs (acyclic and cyclic) in general graphs. These techniques
are limited to cardinality estimation and store only acyclic patterns. In contrast, our catalogue
stores information about acyclic and cyclic patterns and is used for both cardinality and i-cost es-
timation. In addition to selectivity (μ) estimates that are used for cardinality estimation, we store
information about the sizes of the adjacency lists (the |A| values), which allows our optimizer to
differentiate between WCO plans that generate the same number of intermediate results, so have
same cardinality estimates, but incur different i-costs. Storing cyclic patterns in the catalogue allow
us to make accurate estimates for cyclic queries.

8 CONCLUSION

We described two cost-based optimizers: (i) a cost-based dynamic programming optimizer for one-
time subgraph queries that enumerates a plan space that contains WCO plans, BJ plans, and a
large class of hybrid plans and (ii) a cost-based greedy optimizer for continuous subgraph queries,
which builds on top of the delta subgraph query framework. Our one-time optimizer generates
novel hybrid plans that seamlessly mix intersections with binary joins, which are not in the plan
space of prior optimizers for subgraph queries. Our continuous optimizer relies on multi-query
optimization using computation sharing to lower the costs of plans. Within both optimizers, WCO
plans are assigned a cost based on our i-cost metric, which captures the several runtime effects of
QVOs we identified through extensive experiments.

Our approaches in this article have several limitations, which give us directions for future work.
First, our optimizer can benefit from more advanced cardinality and i-cost estimators, such as
those based on sampling outputs or machine learning. Second, for very large one-time queries,
currently our one-time optimizer enumerates a limited part of our plan space. Studying faster plan
enumeration methods, similar to those discussed in Reference [46], is an important future work
direction. Finally, existing literature on subgraph matching, both in the one-time and continuous
settings, contain several optimizations for identifying and evaluating independent components of
a query separately. Example optimizations include factorization [52] or postponing the Cartesian
product optimization from Reference [10].
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This online appendix contains: (1) the complexity result of the multiple continuous subgraph query optimiza-

tion problem; (2) catalogue experimental results; (3) an explanation for how our plans subsume EmptyHeaded

plans; (4) comparisons against CFL and TurboFlux; and (5) further continuous subgraph query evaluation

experiments.

A COMPLEXITY OF MULTIPLE CONTINUOUS SUBGRAPH QUERY OPTIMIZATION

A.1. Formal Optimization Problem and Its Computational Complexity

Recall that we do not know the exact complexity of the actual computational problem that our
optimizer solves. However, we can show that the natural decision version of a slightly more gen-
eral version of the problem, in which we drop the assumption that the set of DSQs in Q̄DSQ are
delta decompositions of a set of subgraph queries is NP-hard. Note that combined plans effectively
use common operators across DSQs if the DSQs compute isomorphic sub-queries. Our goal in
providing this proof is to make the connection between our optimization problem and the max-
imum common induced subgraph problem, which is NP-hard. We first define the more general
optimization problem we consider:

Definition (Generalized Multiple DSQ Optimization Problem (GDOP)): Given a set of arbitrary
delta subgraph queries Q̄DSQ , i.e., a set of subgraph queries where one edge is labeled with δ and
the other edges with o or n, and an arbitrary full catalogue C , and a target cost k , find whether or
not there is a combined plan with cost at most k .

Theorem A.1. GDOP is NP-hard.

Proof. We show that the GDOP is NP-hard on instances in which the given a catalogue that
has a value of 1 for each cost and selectivity. That is the entries in the catalogue are such that
any Qk−1 to Qk extension entry has μ value 1 and the |A| value equal to lists that sum to 1. We
call this the uniform catalogue. Note that when this is the input catalogue the optimal combined
plan is the plan that contains the smallest number of operators. We next show that the maximum

common induced subgraph problem (MCISP) [40] , which is NP-hard, reduces to GDOP. Given
two graphs G1 and G2 and a target value t , MCISP is the problem of finding whether or not there
is a subgraph H with at least t vertices that is an induced subgraph of both G1 and G2, i.e., the
projection of G1 and G2 onto the vertices in H gives H .

The reduction is as follows. Take an instance of MCISP with graphs G1 and G2 and a target
induced subgraph of size t . Assume the nodes inG1 are labeled with a1,a2, . . . ,am1 and each node
inG2 is labeled with b1,b2, . . . ,bm2 . We first construct an instance of GDOP as follows. Label each
edge ofG1 andG2 with o, and extend bothG1 andG2 with a new edge x→y with label δ and connect
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both x and y to each node in G1 and G2. These labeled and extended G1 and G2 graphs are now
delta subgraph queries, and we refer to them as DSQ1 and DSQ2. Now consider solving GDOP on
DSQ1 and DSQ2 using a uniform catalogue and a target cost ofm1 +m2 + 1 − t , which, due to the
structure of the catalogue, is the problem of finding a combined plan with at mostm1 +m2 + 1 − t
operators.

First, observe that any combined plan needs to have exactly two sink E/I operators because
there are two DSQs, i.e., in the DAG of any correct combined plan for this GDOP instances there
will be two final “branches” leading to sink operators. Second, observe that we only need to con-
sider combined plans whose DAGs have the following structure: (1) start with a source Scan that

matches
δ−→ as usual; (2) a chain of z E/I operators each giving its output to one output E/I operator,

which compute a common sub-query for bothDSQ1 andDSQ2, where the last E/I operator gives its
output to two operators (to start the final two “branches”); (3) two branches, one with r1 =m1 − z
many and the other with r2 =m2 − z many E/I operators, each giving its output to one output
E/I operator. Any combined plan that branches and merges multiple times is suboptimal, because,
we can always keep the last two branches and then only keep one chain back to the source Scan
operator, so remove all but one of the previous branches that eventually merge, which strictly de-
creases the number of operators in the combined plan. Therefore any combined plan effectively
starts with a Scan operator that evaluates the extra x→y edge we added to G1 and G2 and then a
z-size common induced subgraph ofG1 andG2 and then in two separate branches of E/I operators
evaluates the rest of the vertices in G1 and G2, with a cost of m1 +m2 + 1 − z (+1 is for the initial
scan operator). Therefore, there is an induced subgraph of size at least t if and only if there is a
combined plan in the GDOP instance with at mostm1 +m2 + 1 − t cost, completing the proof. �

B CATALOGUE EXPERIMENTS

We present preliminary experiments to show two tradeoffs: (1) the space vs. estimation quality
tradeoff that parameter h determines; and (2) construction time vs. estimation quality tradeoff that
parameter z determines. For estimation quality we evaluate cardinality estimation and omit the
estimation of adjacency list sizes, i.e., the |A| column, that we use in our i-cost estimates. We first
generated all 5-vertex size unlabeled queries. This gives us 535 queries. For each query, we assign
labels at random given the number of labels in the dataset (we consider Amazon with 1 label,
Google with 3 labels). Then for each dataset, we construct two sets of catalogues: (1) we fix z to
1,000, and construct a catalogue with h = 2, h = 3, and h = 4 and record the number of entries
in the catalogue; (2) we fix h to 3 and construct a catalogue with z = 100, z = 500, z = 1,000, and
z = 5,000 and record the construction time. Then, for each labeled query Q , we first compute its
actual cardinality, |Qtrue |, and record the estimated cardinality of Q , Qest for each catalogue we
constructed. Using these estimation we record the q-error of the estimation, which is max(|Qest | /
|Qtrue |, |Qtrue | / |Qest |). This is an error metric used in prior cardinality estimation work [35] that
is at least 1, where 1 indicates completely accurate estimation. As a very basic baseline, we also
compared our catalogues to the cardinality estimator of PostgreSQL. For each dataset, we created
an Edge relation E(from, to). We create two composite indexes on the table on (from, to) and (to,
from) which are equivalent to our forward and backward adjacency lists. We collected stats on
each table through the ANALYZE command. We obtain PostgreSQL’s estimate by writing each
query in an equivalent SQL select-join query and running EXPLAIN on the SQL query.

Our results are shown in Tables 1 and 2 as cumulative distributions as follows: for different q-
error bounds τ , we show the number of queries that a particular catalogue estimated with q-error
at most τ . As expected, larger h and larger z values lead to less q-error, while respectively yielding
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Table 1. Q-error and Catalogue Creation Time (CT)

in Secs for GraphflowDB for Different z Values

z CT ≤2 ≤3 ≤3 ≤5 ≤10 >20

Am

100 0.1 318 445 510 526 529 535
500 0.3 384 486 520 527 530 535

1,000 0.5 383 481 519 529 532 535
5,000 1.5 384 475 518 529 532 535

Go3

100 3.1 166 276 356 415 561 535
500 9.3 214 310 371 430 477 535

1,000 17.0 222 315 371 430 475 535
5,000 66.1 219 322 373 432 473 535

Table 2. Postgres (PG) and GraphflowDB (GF) Q-error and Number of Catalogue

Entries (|R|) for GF for Different h Values

h |R| ≤2 ≤3 ≤3 ≤5 ≤10 >20
2 8 348 464 512 523 527 535

Am GF 3 138 381 482 512 524 527 535
4 2858 498 510 518 524 527 535

PG – – 15 15 23 23 25 535
2 144 181 289 375 447 492 535

Go3 GF 3 20.3K 222 315 371 430 475 535
4 11.9M 441 497 515 524 529 535

PG – – 0 0 0 0 0 535

larger catalogue sizes and longer construction times. The biggest q-error differences are obtained
when moving from h = 3 to h = 4 and z = 100 to z = 500. There are a few exception τ values when
the larger h or z values lead to very minor decreases in the number of queries within the τ bound
but the trend holds broadly.

C SUBSUMED EMPTYHEADED PLANS

We show that our plan space contains EmptyHeaded’s GHD-based plans that satisfy the projec-
tion constraint. For details on GHDs and how EmptyHeaded picks GHDs we refer the reader to
Reference [2]. Briefly, a GHD D of Q is a decomposition of Q where each node i is labelled with
a subquery Qi of Q . The interpretation of a GHD D as a join plan is as follows: each subquery is
evaluated using Generic Join first and materialized into an intermediate table. Then, starting from
the leaves, each table is joined into its parent in an arbitrary order. So a GHD can easily be turned
into a join planT in our notation (from Section 3.2) by “expanding” each sub-queryQi into a WCO
subplan according to the chosen QVO that EmptyHeaded picks for Qi and adding intermediate
nodes in T that are the results of the joins that EmptyHeaded performs. Given Q , EmptyHeaded
picks the GHDD∗ forQ as follows. First, EmptyHeaded loops over each GHDD ofQ , and computes
the worst-case size of the subqueries, which are computed by the AGM bounds of these queries
(i.e., the minimum fractional edge covers of sub-queries; see Reference [8]). The maximum size of
the subqueries is the width of GHD and the GHD with the minimum width is picked. This effec-
tively implies that one of these GHDs satisfy our projection constraint. This is because adding a
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missing query edge to Qi (Vi ,Ei ) can only decrease its fractional edge cover. To see this consider
Q ′i (Vi ,E

′
i ), which containsV ′ but also any missing query edge in Ei . Any fractional edge cover for

Qi is a fractional edge cover for Q ′i (by giving weight 0 to E ′i − Ei in the cover), so the minimum
fractional edge cover of Q ′i is at most that for Qi , proving that D∗ is in our plan space.

We verified that for every query from Figure 10, the plans EmptyHeaded picks satisfy the pro-
jection constraint. However, there are minimum-width GHDs that do not satisfy this constraint.
For example, for Q10, EmptyHeaded finds two minimum-width GHDs: (i) one that joins a diamond
and a triangle (width 2) and (ii) one that joins a three path (a2a1a3a4) joined with a triangle with
an extended edge (also width 2). The first GHD satisfies the projection constraint, while the sec-
ond one does not. EmptyHeaded (arbitrarily) picks the first GHD. As we argued in Section 3.2.1
, satisfying the projection constraint is not a disadvantage, as it makes the plans generate fewer
intermediate tuples. For example, on a Gnutella peer-to-peer graph [37] (neither GHD finished in
a reasonable amount of time on our datasets from Table 9), the first GHD for Q10 takes around
150ms, while the second one does not finish within 30 minutes.

D CFL COMPARISON

CFL [10] is one of the state-of-the-art subgraph matching algorithms whose code is available. The
algorithm can evaluate labelled subgraph queries as in our setting. The main optimization of CFL
is what is referred to as “postponing Cartesian products” in the query. These are conditionally
independent parts of the query that can be matched separately and appear as Cartesian products
in the output. CFL decomposes a query into a dense core and a forest. Broadly, the algorithm first
matches the core, where fewer matches are expected and there is less chance of independence
between the parts. Then the forest is matched. In both parts, any detected Cartesian products
are postponed and evaluated independently. This reduces the number of intermediate results the
algorithm generates. CFL also builds an index called CPI, which is used to quickly enumerate
matches of paths in the query during evaluation. We follow the setting from the evaluation section
of Reference [10]. We obtained the CFL code and 6 different query sets used in Reference [10]
from the authors. Each query set contains 100 randomly generated queries that are either sparse
(average query vertex degree ≤ 3) or dense (average query vertex degree > 3). We used three sparse
query sets Q10s, Q15, and Q20s containing queries with 10, 15, and 20 query vertices, respectively.
Similarly, we used three dense query sets Q10d, Q15d, and Q20d. To be close to their setup, we use
the human dataset from the original CFL paper. The dataset contains 86,282 edges, 4,674 vertices,
44 distinct labels. We report the average runtime per query for each query set when we limit
the output to 105 and 108 matches as done in Reference [10]. Table 3 compares the runtime of
GraphflowDB and CFL on the 6 query sets. Except for one of our experiments, on Q10d with 105

output size limit, GraphflowDB’s runtimes are faster (between 1.2× to 12.2×) than CFL. We note
that although our runtime results are faster than CFL on average, readers should not interpret
these results as one approach being superior to another. For example, we think the postponing

Table 3. Average Runtime (seconds) of GraphflowDB (GF) and CFL on Large Queries

|T | Q10s Q15s Q20s Q10d Q15d Q20d

105
GF 7.3 6.0 5.5 29.2(2.2x) 99.8 142.0

CFL 9.3(1.2x) 17.5(2.9x) 40.5(7.3x) 13.2 389.9(3.9x) 1,140.7(8.0x)

108
GF 625.6 665.5 797.2 1,159.6 1,906.2 1,556.9

CFL 4,818.9(7.7x) 5,898.1(8.8x) 7,104.1(8.9x) 7,974.3(6.8x) 11,656.2(6.1x) 19,135.7(12.2x)

Qi(s/d) is a query set of 100 randomly generated queries where i is the number of vertices and s and d specify sparse and

dense queries, respectively as specified in Appendix D.
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Table 4. Turboflux (Tf ) vs. GraphflowDB (GF) on

Continuous Subgraph Queries Diamond (QD ), Diamond-X

(QDX ), 4-Clique (Q4C ), and 5-Clique (Q5C ) from

the Query Set SEED

QD Q4C Q5C

Am
GF 3.5 2.1 9.1

Tf 11.4 (3.3x) 13.2 (6.3x) 1069 (117.5x)

Go
GF 9.1 3.8 50.4

Tf 29.9 (3.3x) 41.6 (10.9x) 3090 (61.3x)

of Cartesian products optimization and a CPI index are good techniques and can improve our
approach. However, one major advantage of our approach is that we do flat tuple-based processing
using standard database operators, so our techniques can easily be integrated into existing graph
databases. It is less clear how to decompose CFL-style processing into database operators.

E TURBOFLUX COMPARISON

TurboFlux [30] evaluates a query using a data centric graph (DCG), which is a compressed
representation of partial matches of the query in G (EG ,VG ). Briefly, the DCG is a multigraph
GDCG (VDCG ,EDCG ) whereVDCG = VG and EDCG contains |VQ | − 1 parallel edges for each e ∈ EG .
Each parallel edge has a state of null (N), implicit (IM), or explicit (EX) and a label which is one of
the query vertices in Q . An EX edge u→v with label ai ∈ VQ indicate a set of successful matches
of vertices (according to an order) to query vertices where v matches ai . Updates to G, TurboFlux
transitions the states of the edges and then runs a subgraph matching algorithm on the DCG.

We obtained the code from the original authors. We used four different continuous subgraph
queries from the SEED query set: (i) a Diamond (QD ); (ii) a Diamond-X (QDX ); (iii) a 4-Clique
(Q4C ); and (iv) a 5-Clique (Q5C ). As in previous experiments we pre-loaded both TurboFlux and
GraphflowDB with a random 90% of the dataset. We streamed in the remaining 10% of edges one
edge at a time because TurboFlux does not support batching of updates. We show the results of
this experiment in Table 4. Across all datasets and queries, GraphflowDB outperforms TurboFlux
by at least 3.3× and by up to 117.5×. As we emphasized in our one-time query CFL comparisons,
readers should not conclude from these experiments that our approach is superior to TurboFlux’s
approach. The compared approaches and the actual implementations of these approaches are very
different (and we were only provided the binary). We provide these experiments merely for com-
pleteness of our work and sanity checks to verify that our implementation is competitive with ex-
isting recent solutions from literature. We believe approaches such as DCG that allow compressed
representations are good techniques. One important distinction to note is that our approach was
specifically designed to be easily integrated into a GDBMS and our implementation is part of a
GDBMS architecture. In contrast it is less clear how to decompose TurboFlux-style processing
into actual database implementations. This is an interesting research direction.

F RUNTIME AND EXECUTION METRICS FOR CONTINUOUS SUBGRAPH QUERIES

Table 5 reports the rest of our experiments from Section 6.3 on Epinions and Google datasets.
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Table 5. Runtime (Seconds) of Bns , Bs , Gr, and Gopis on 4Cs, 4Cs5C, SEED, and MagicRec Query Sets

Runtime I-cost Runtime I-cost Runtime I-cost

4Cs1 4Cs2 4Cs3

Ep
Bns

Bs

Gr
Grp

5.51
5.15 (1.07x)
4.95 (1.11x)
4.78 (1.15x)

1.488B (84%)
1.347B (1.10x)
1.328B (1.20x)
1.244B (1.20x)

0.56
0.43 (1.30x)
0.49 (1.14x)
0.49 (1.14x)

0.163B (65%)
0.125B (1.30x)
0.126B (1.30x)
0.126B (1.30x)

0.33
0.21 (1.57x)
0.22 (1.50x)
0.18 (1.83x)

0.052B (50%)
0.035B (1.49x)
0.037B (1.41x)
0.030B (1.73x)

Go
Bns

Bs

Gr
Grp

14.61
13.03 (1.12x)
13.10 (1.12x)
13.16 (1.11x)

3.032B (58%)
2.226B (1.36x)
2.073B (1.46x)
1.864B (1.63x)

2.70
2.14 (1.26x)
2.23 (1.21x)
1.99 (1.36x)

0.515B (38%)
0.314B (1.64x)
0.285B (1.81x)
0.278B (1.85x)

1.31
1.12 (1.17x)
1.00 (1.31x)
0.94 (1.39x)

0.188B (39%)
0.126B (1.49x)
0.118B (1.59x)
0.106B (1.77x)

4Cs5C1 4Cs5C2 4Cs5C3

Ep
Bns

Bs

Gr
Grp

16.71
16.35 (1.02x)
15.78 (1.06x)
15.80 (1.06x)

5.607B (64%)
5.339B (1.05x)
5.320B (1.05x)
5.235B (1.07x)

0.97
0.95 (1.02x)
0.82 (1.18x)
0.66 (1.47x)

0.278B (22%)
0.218B (1.28x)
0.215B (1.29x)
0.209B (1.33x)

0.42
0.29 (1.45x)
0.36 (1.17x)
0.27 (1.56x)

0.074B (7%)
0.048B (1.54x)
0.048B (1.54x)
0.041B (1.80x)

Go
Bns

Bs

Gr
Grp

33.96
33.1 (1.03x)
32.3 (1.05x)
32.8 (1.04x)

5.422B (36%)
4.436B (1.22x)
4.283B (1.27x)
4.073B (1.33x)

3.54
2.88 (1.23x)
2.64 (1.34x)
2.71 (1.31x)

0.607B (6%)
0.374B (1.63x)
0.343B (1.77x)
0.332B (1.83x)

1.63
0.99 (1.65x)
0.97 (1.68x)
0.97 (1.68x)

0.211B (1%)
0.136B (1.55x)
0.126B (1.67x)
0.113B (1.87x)

SEED1 SEED2 SEED3

Ep
Bns

Bs

Gr
Grp

205.9
197.8 (1.04x)
197.8 (1.04x)
192.8 (1.07x)

47.76B (86%)
46.03B (1.04x)
46.03B (1.04x)
44.75B (1.07x)

8.45
7.68 (1.10x)
7.68 (1.10x)
7.45 (1.13x)

2.071B (61%)
1.740B (1.19x)
1.732B (1.20x)
1.691B (1.22x)

2.43
1.80 (1.35x)
1.81 (1.34x)
1.81 (1.34x)

0.430B (43%)
0.323B (1.33x)
0.317B (1.36x)
0.311B (1.38x)

Go
Bns

Bs

Gr
Grp

97.9
97.4 (1.01)

81.6 (1.20x)
81.6 (1.20x)

13.04B (74%)
11.98B (1.09x)
11.51B (1.13x)
11.51B (1.13x)

7.25
5.50 (1.32x)
5.64 (1.29x)
5.31 (1.37x)

0.715B (34%)
0.499B (1.43x)
0.500B (1.43x)
0.474B (1.51x)

3.31
2.37 (1.40x)
1.77 (1.87x)
1.61 (2.06x)

0.208B (28%)
0.146B (1.42x)
0.114B (1.82x)
0.109B (1.91x)

MagicRec1 MagicRec2 MagicRec3

Ep
Bns

Bs

Gr

1524
1416 (1.08x)
1414 (1.08x)

40.64B (19%)
18.06B (2.25x)
17.65B (2.30x)

40.2
24.6 (1.63x)
24.4 (1.65x)

9.999B (28%)
5.414B (1.85x)
5.121B (1.95x)

7.66
3.73 (2.05x)
3.66 (2.09x)

2.048B (24%)
1.014B (2.02x)
0.929B (2.20x)

Go
Bns

Bs

Gr

475.3
430.4 (1.10x)
427.2 (1.11x)

43.77B (20%)
20.19B (2.17x)
19.88B (2.20x)

18.2
10.3 (1.77x)
9.9 (1.84x)

7.345B (26%)
3.922B (1.87x)
3.607B (2.04x)

5.48
2.78 (1.97x)
2.62 (2.09x)

1.600B (23%)
0.786B (2.04x)
0.702B (2.23x)

The percentage value next to Bns total i-cost shows the percentage of work done in the last level. Values in parentheses

show the factor of improvement of the runtime over Bns .
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